{"title":"改善尖峰神经网络学习性能的自适应突触调整机制","authors":"Hyun-Jong Lee, Jae-Han Lim","doi":"10.1111/coin.70001","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Spiking Neural Networks (SNNs) are currently attracting researchers' attention due to their efficiencies in various tasks. Spike-timing-dependent plasticity (STDP) is an unsupervised learning process that utilizes bio-plausibility based on the relative timing of pre/post-synaptic spikes of neurons. Integrated with STDP, SNNs perform well consuming less energy. However, it is hard to ensure that synaptic weights always converge to values guaranteeing accurate prediction because STDP does not change synaptic weights with supervision. To address this limitation, researchers have proposed mechanisms for inducing STDP to converge synaptic weights on the proper values referring to current synaptic weights. Thus, if the current weights fail to describe proper synaptic connections, they cannot induce STDP to update synaptic weights properly. To solve this problem, we propose an adaptive mechanism that helps STDP to converge synaptic weights directly based on input data features: Adaptive synaptic template (AST). AST leads synaptic weights to describe synaptic connections according to the data features. It prevents STDP from changing synaptic weights based on abnormal weights that fail to describe the proper synaptic connections. This is because it does not use the current synaptic weights that can disturb proper weight convergence. We integrate AST with an SNN and conduct experiments to compare it with a baseline (the SNN without AST) and benchmarks (previous works to improve STDP). Our experimental results show that the SNN using AST classifies various data sets with 6%–39% higher accuracy than the baseline and benchmarks.</p>\n </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Synaptic Adjustment Mechanism to Improve Learning Performances of Spiking Neural Networks\",\"authors\":\"Hyun-Jong Lee, Jae-Han Lim\",\"doi\":\"10.1111/coin.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Spiking Neural Networks (SNNs) are currently attracting researchers' attention due to their efficiencies in various tasks. Spike-timing-dependent plasticity (STDP) is an unsupervised learning process that utilizes bio-plausibility based on the relative timing of pre/post-synaptic spikes of neurons. Integrated with STDP, SNNs perform well consuming less energy. However, it is hard to ensure that synaptic weights always converge to values guaranteeing accurate prediction because STDP does not change synaptic weights with supervision. To address this limitation, researchers have proposed mechanisms for inducing STDP to converge synaptic weights on the proper values referring to current synaptic weights. Thus, if the current weights fail to describe proper synaptic connections, they cannot induce STDP to update synaptic weights properly. To solve this problem, we propose an adaptive mechanism that helps STDP to converge synaptic weights directly based on input data features: Adaptive synaptic template (AST). AST leads synaptic weights to describe synaptic connections according to the data features. It prevents STDP from changing synaptic weights based on abnormal weights that fail to describe the proper synaptic connections. This is because it does not use the current synaptic weights that can disturb proper weight convergence. We integrate AST with an SNN and conduct experiments to compare it with a baseline (the SNN without AST) and benchmarks (previous works to improve STDP). Our experimental results show that the SNN using AST classifies various data sets with 6%–39% higher accuracy than the baseline and benchmarks.</p>\\n </div>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":\"40 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.70001\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.70001","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Adaptive Synaptic Adjustment Mechanism to Improve Learning Performances of Spiking Neural Networks
Spiking Neural Networks (SNNs) are currently attracting researchers' attention due to their efficiencies in various tasks. Spike-timing-dependent plasticity (STDP) is an unsupervised learning process that utilizes bio-plausibility based on the relative timing of pre/post-synaptic spikes of neurons. Integrated with STDP, SNNs perform well consuming less energy. However, it is hard to ensure that synaptic weights always converge to values guaranteeing accurate prediction because STDP does not change synaptic weights with supervision. To address this limitation, researchers have proposed mechanisms for inducing STDP to converge synaptic weights on the proper values referring to current synaptic weights. Thus, if the current weights fail to describe proper synaptic connections, they cannot induce STDP to update synaptic weights properly. To solve this problem, we propose an adaptive mechanism that helps STDP to converge synaptic weights directly based on input data features: Adaptive synaptic template (AST). AST leads synaptic weights to describe synaptic connections according to the data features. It prevents STDP from changing synaptic weights based on abnormal weights that fail to describe the proper synaptic connections. This is because it does not use the current synaptic weights that can disturb proper weight convergence. We integrate AST with an SNN and conduct experiments to compare it with a baseline (the SNN without AST) and benchmarks (previous works to improve STDP). Our experimental results show that the SNN using AST classifies various data sets with 6%–39% higher accuracy than the baseline and benchmarks.
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.