Tianli Ma, Rong Zhang, Song Gao, Hong Li, Yang Zhang
{"title":"针对具有不等式约束的不确定系统的变式贝叶斯截断自适应滤波器","authors":"Tianli Ma, Rong Zhang, Song Gao, Hong Li, Yang Zhang","doi":"10.1049/2024/3809689","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this paper, a variational Bayesian (VB) truncated adaptive filter for uncertain systems with inequality constraints is proposed. By choosing the skew-<i>t</i> and inverse Wishart distributions as the prior information of the measurement noise and predicted error covariance matrix, the state vector, the predicted error covariance matrix, and noise parameters are inferred and approximated by using the VB method. To achieve the inequality-constrained estimation, the constrained state is computed by truncating the probability density function (PDF) of the estimated state after the variational update stage; the mean and covariance of the constrained state are the first and second moments of the truncated PDF. Considering the model uncertainties where the system dynamics are unpredictable, a multiple model VB truncated adaptive filter is proposed in the interacting multiple model framework. The performances of the proposed algorithms are evaluated via the target tracking simulations and the robot positioning experiments. Results show that the proposed algorithms improve estimation accuracy compared with the existing adaptive filters when the states suffer inequality constraints.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/3809689","citationCount":"0","resultStr":"{\"title\":\"A Variational Bayesian Truncated Adaptive Filter for Uncertain Systems with Inequality Constraints\",\"authors\":\"Tianli Ma, Rong Zhang, Song Gao, Hong Li, Yang Zhang\",\"doi\":\"10.1049/2024/3809689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In this paper, a variational Bayesian (VB) truncated adaptive filter for uncertain systems with inequality constraints is proposed. By choosing the skew-<i>t</i> and inverse Wishart distributions as the prior information of the measurement noise and predicted error covariance matrix, the state vector, the predicted error covariance matrix, and noise parameters are inferred and approximated by using the VB method. To achieve the inequality-constrained estimation, the constrained state is computed by truncating the probability density function (PDF) of the estimated state after the variational update stage; the mean and covariance of the constrained state are the first and second moments of the truncated PDF. Considering the model uncertainties where the system dynamics are unpredictable, a multiple model VB truncated adaptive filter is proposed in the interacting multiple model framework. The performances of the proposed algorithms are evaluated via the target tracking simulations and the robot positioning experiments. Results show that the proposed algorithms improve estimation accuracy compared with the existing adaptive filters when the states suffer inequality constraints.</p>\\n </div>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/3809689\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/3809689\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/3809689","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Variational Bayesian Truncated Adaptive Filter for Uncertain Systems with Inequality Constraints
In this paper, a variational Bayesian (VB) truncated adaptive filter for uncertain systems with inequality constraints is proposed. By choosing the skew-t and inverse Wishart distributions as the prior information of the measurement noise and predicted error covariance matrix, the state vector, the predicted error covariance matrix, and noise parameters are inferred and approximated by using the VB method. To achieve the inequality-constrained estimation, the constrained state is computed by truncating the probability density function (PDF) of the estimated state after the variational update stage; the mean and covariance of the constrained state are the first and second moments of the truncated PDF. Considering the model uncertainties where the system dynamics are unpredictable, a multiple model VB truncated adaptive filter is proposed in the interacting multiple model framework. The performances of the proposed algorithms are evaluated via the target tracking simulations and the robot positioning experiments. Results show that the proposed algorithms improve estimation accuracy compared with the existing adaptive filters when the states suffer inequality constraints.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf