{"title":"关于差异隐私的统计学观点:假设检验、表征和布莱克韦尔定理","authors":"Weijie J. Su","doi":"10.1146/annurev-statistics-112723-034158","DOIUrl":null,"url":null,"abstract":"Differential privacy is widely considered the formal privacy for privacy-preserving data analysis due to its robust and rigorous guarantees, with increasingly broad adoption in public services, academia, and industry. Although differential privacy originated in the cryptographic context, in this review we argue that, fundamentally, it can be considered a pure statistical concept. We leverage Blackwell's informativeness theorem and focus on demonstrating that the definition of differential privacy can be formally motivated from a hypothesis testing perspective, thereby showing that hypothesis testing is not merely convenient but also the right language for reasoning about differential privacy. This insight leads to the definition of f-differential privacy, which extends other differential privacy definitions through a representation theorem. We review techniques that render f-differential privacy a unified framework for analyzing privacy bounds in data analysis and machine learning. Applications of this differential privacy definition to private deep learning, private convex optimization, shuffled mechanisms, and US Census data are discussed to highlight the benefits of analyzing privacy bounds under this framework compared with existing alternatives.","PeriodicalId":48855,"journal":{"name":"Annual Review of Statistics and Its Application","volume":"55 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Statistical Viewpoint on Differential Privacy: Hypothesis Testing, Representation, and Blackwell's Theorem\",\"authors\":\"Weijie J. Su\",\"doi\":\"10.1146/annurev-statistics-112723-034158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential privacy is widely considered the formal privacy for privacy-preserving data analysis due to its robust and rigorous guarantees, with increasingly broad adoption in public services, academia, and industry. Although differential privacy originated in the cryptographic context, in this review we argue that, fundamentally, it can be considered a pure statistical concept. We leverage Blackwell's informativeness theorem and focus on demonstrating that the definition of differential privacy can be formally motivated from a hypothesis testing perspective, thereby showing that hypothesis testing is not merely convenient but also the right language for reasoning about differential privacy. This insight leads to the definition of f-differential privacy, which extends other differential privacy definitions through a representation theorem. We review techniques that render f-differential privacy a unified framework for analyzing privacy bounds in data analysis and machine learning. Applications of this differential privacy definition to private deep learning, private convex optimization, shuffled mechanisms, and US Census data are discussed to highlight the benefits of analyzing privacy bounds under this framework compared with existing alternatives.\",\"PeriodicalId\":48855,\"journal\":{\"name\":\"Annual Review of Statistics and Its Application\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Statistics and Its Application\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-statistics-112723-034158\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Statistics and Its Application","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1146/annurev-statistics-112723-034158","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
差分隐私因其稳健而严格的保证,被广泛认为是隐私保护数据分析的正式隐私,在公共服务、学术界和工业界得到越来越广泛的应用。虽然差分隐私起源于密码学,但在本综述中,我们认为从根本上讲,它可以被视为一个纯粹的统计学概念。我们利用布莱克韦尔(Blackwell)的信息性定理,重点论证了差分隐私的定义可以从假设检验的角度正式提出,从而表明假设检验不仅方便,而且是推理差分隐私的正确语言。这一见解引出了 f 差分隐私的定义,它通过表示定理扩展了其他差分隐私定义。我们回顾了一些技术,这些技术使 f 差分隐私成为分析数据分析和机器学习中隐私边界的统一框架。我们讨论了这种差分隐私定义在私有深度学习、私有凸优化、洗牌机制和美国人口普查数据中的应用,以突出与现有替代方法相比,在此框架下分析隐私边界的优势。
A Statistical Viewpoint on Differential Privacy: Hypothesis Testing, Representation, and Blackwell's Theorem
Differential privacy is widely considered the formal privacy for privacy-preserving data analysis due to its robust and rigorous guarantees, with increasingly broad adoption in public services, academia, and industry. Although differential privacy originated in the cryptographic context, in this review we argue that, fundamentally, it can be considered a pure statistical concept. We leverage Blackwell's informativeness theorem and focus on demonstrating that the definition of differential privacy can be formally motivated from a hypothesis testing perspective, thereby showing that hypothesis testing is not merely convenient but also the right language for reasoning about differential privacy. This insight leads to the definition of f-differential privacy, which extends other differential privacy definitions through a representation theorem. We review techniques that render f-differential privacy a unified framework for analyzing privacy bounds in data analysis and machine learning. Applications of this differential privacy definition to private deep learning, private convex optimization, shuffled mechanisms, and US Census data are discussed to highlight the benefits of analyzing privacy bounds under this framework compared with existing alternatives.
期刊介绍:
The Annual Review of Statistics and Its Application publishes comprehensive review articles focusing on methodological advancements in statistics and the utilization of computational tools facilitating these advancements. It is abstracted and indexed in Scopus, Science Citation Index Expanded, and Inspec.