{"title":"误差界限有多精确?-解析函数的正交最差误差下限--","authors":"Takashi Goda, Yoshihito Kazashi, Ken’ichiro Tanaka","doi":"10.1137/24m1634163","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 5, Page 2370-2392, October 2024. <br/> Abstract. Numerical integration over the real line for analytic functions is studied. Our main focus is on the sharpness of the error bounds. We first derive two general lower estimates for the worst-case integration error, and then apply these to establish lower bounds for various quadrature rules. These bounds turn out to either be novel or improve upon existing results, leading to lower bounds that closely match upper bounds for various formulas. Specifically, for the suitably truncated trapezoidal rule, we improve upon general lower bounds on the worst-case error obtained by Sugihara [Numer. Math., 75 (1997), pp. 379–395] and provide exceptionally sharp lower bounds apart from a polynomial factor, and in particular we show that the worst-case error for the trapezoidal rule by Sugihara is not improvable by more than a polynomial factor. Additionally, our research reveals a discrepancy between the error decay of the trapezoidal rule and Sugihara’s lower bound for general numerical integration rules, introducing a new open problem. Moreover, the Gauss–Hermite quadrature is proven suboptimal under the decay conditions on integrands we consider, a result not deducible from upper-bound arguments alone. Furthermore, to establish the near-optimality of the suitably scaled Gauss–Legendre and Clenshaw–Curtis quadratures, we generalize a recent result of Trefethen [SIAM Rev., 64 (2022), pp. 132–150] for the upper error bounds in terms of the decay conditions.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"62 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How Sharp Are Error Bounds? –Lower Bounds on Quadrature Worst-Case Errors for Analytic Functions–\",\"authors\":\"Takashi Goda, Yoshihito Kazashi, Ken’ichiro Tanaka\",\"doi\":\"10.1137/24m1634163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 5, Page 2370-2392, October 2024. <br/> Abstract. Numerical integration over the real line for analytic functions is studied. Our main focus is on the sharpness of the error bounds. We first derive two general lower estimates for the worst-case integration error, and then apply these to establish lower bounds for various quadrature rules. These bounds turn out to either be novel or improve upon existing results, leading to lower bounds that closely match upper bounds for various formulas. Specifically, for the suitably truncated trapezoidal rule, we improve upon general lower bounds on the worst-case error obtained by Sugihara [Numer. Math., 75 (1997), pp. 379–395] and provide exceptionally sharp lower bounds apart from a polynomial factor, and in particular we show that the worst-case error for the trapezoidal rule by Sugihara is not improvable by more than a polynomial factor. Additionally, our research reveals a discrepancy between the error decay of the trapezoidal rule and Sugihara’s lower bound for general numerical integration rules, introducing a new open problem. Moreover, the Gauss–Hermite quadrature is proven suboptimal under the decay conditions on integrands we consider, a result not deducible from upper-bound arguments alone. Furthermore, to establish the near-optimality of the suitably scaled Gauss–Legendre and Clenshaw–Curtis quadratures, we generalize a recent result of Trefethen [SIAM Rev., 64 (2022), pp. 132–150] for the upper error bounds in terms of the decay conditions.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1634163\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1634163","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
How Sharp Are Error Bounds? –Lower Bounds on Quadrature Worst-Case Errors for Analytic Functions–
SIAM Journal on Numerical Analysis, Volume 62, Issue 5, Page 2370-2392, October 2024. Abstract. Numerical integration over the real line for analytic functions is studied. Our main focus is on the sharpness of the error bounds. We first derive two general lower estimates for the worst-case integration error, and then apply these to establish lower bounds for various quadrature rules. These bounds turn out to either be novel or improve upon existing results, leading to lower bounds that closely match upper bounds for various formulas. Specifically, for the suitably truncated trapezoidal rule, we improve upon general lower bounds on the worst-case error obtained by Sugihara [Numer. Math., 75 (1997), pp. 379–395] and provide exceptionally sharp lower bounds apart from a polynomial factor, and in particular we show that the worst-case error for the trapezoidal rule by Sugihara is not improvable by more than a polynomial factor. Additionally, our research reveals a discrepancy between the error decay of the trapezoidal rule and Sugihara’s lower bound for general numerical integration rules, introducing a new open problem. Moreover, the Gauss–Hermite quadrature is proven suboptimal under the decay conditions on integrands we consider, a result not deducible from upper-bound arguments alone. Furthermore, to establish the near-optimality of the suitably scaled Gauss–Legendre and Clenshaw–Curtis quadratures, we generalize a recent result of Trefethen [SIAM Rev., 64 (2022), pp. 132–150] for the upper error bounds in terms of the decay conditions.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.