D.D. Kok , L. Scherer , W. de Vries , P.M. van Bodegom
{"title":"MiPrime:微生物介导的有机添加剂对可测量的土壤有机碳组分的影响及相关诱导效应模型","authors":"D.D. Kok , L. Scherer , W. de Vries , P.M. van Bodegom","doi":"10.1016/j.soilbio.2024.109618","DOIUrl":null,"url":null,"abstract":"<div><div>Priming effects can influence the efficiency with which organic amendments sequester carbon in the soil. Yet, few soil models currently include priming effects. Those models that do are often based on operationally defined soil pools and implicitly allow only for positive priming effects. This limits the verification of model processes with experimental data and hinders the optimization of our carbon sequestration strategies. To address these shortcomings, we developed MiPrime, which offers a framework for the mechanistic modelling of organic amendment impacts on microbially mediated transformation of carbon fractions that are quantifiable through parsimonious soil extraction methods. MiPrime allows for assessment of organic amendment impacts on soil carbon dynamics, including priming effects, by simulating changes in mineralized, microbial biomass, dissolvable, hot water extractable and insoluble carbon fractions in soil exogenous (i.e. organic amendment-derived) and endogenous (i.e. soil) pools. After calibration of model parameters using Markov Chain Monte Carlo methods to incubation data of three types of isotopically labelled roadside grasses (a fresh grass product, a compost thereof, and a Bokashi-fermented product thereof), MiPrime was able to simulate changes in carbon fractions of the soil with a good degree of accuracy for five compositionally complex organic amendments, namely the three types of roadside grasses, as well as non-isotopically labelled wood chips and water weeds and reeds. Validation of the model results with experimental data demonstrates that changes in total carbon were very well predicted but that there is room for improvement in predicting mineralization rates and changes in dissolvable, hot water extractable and insoluble carbon fractions in the soil endogenous pool. MiPrime thus offers an initial step towards the mechanistic modelling of organic amendment impacts on measurable soil carbon fractions and can operate as a new tool for designing effective carbon sequestration strategies and understanding organic amendment impacts.</div></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"200 ","pages":"Article 109618"},"PeriodicalIF":9.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MiPrime: A model for the microbially mediated impacts of organic amendments on measurable soil organic carbon fractions and associated priming effects\",\"authors\":\"D.D. Kok , L. Scherer , W. de Vries , P.M. van Bodegom\",\"doi\":\"10.1016/j.soilbio.2024.109618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Priming effects can influence the efficiency with which organic amendments sequester carbon in the soil. Yet, few soil models currently include priming effects. Those models that do are often based on operationally defined soil pools and implicitly allow only for positive priming effects. This limits the verification of model processes with experimental data and hinders the optimization of our carbon sequestration strategies. To address these shortcomings, we developed MiPrime, which offers a framework for the mechanistic modelling of organic amendment impacts on microbially mediated transformation of carbon fractions that are quantifiable through parsimonious soil extraction methods. MiPrime allows for assessment of organic amendment impacts on soil carbon dynamics, including priming effects, by simulating changes in mineralized, microbial biomass, dissolvable, hot water extractable and insoluble carbon fractions in soil exogenous (i.e. organic amendment-derived) and endogenous (i.e. soil) pools. After calibration of model parameters using Markov Chain Monte Carlo methods to incubation data of three types of isotopically labelled roadside grasses (a fresh grass product, a compost thereof, and a Bokashi-fermented product thereof), MiPrime was able to simulate changes in carbon fractions of the soil with a good degree of accuracy for five compositionally complex organic amendments, namely the three types of roadside grasses, as well as non-isotopically labelled wood chips and water weeds and reeds. Validation of the model results with experimental data demonstrates that changes in total carbon were very well predicted but that there is room for improvement in predicting mineralization rates and changes in dissolvable, hot water extractable and insoluble carbon fractions in the soil endogenous pool. MiPrime thus offers an initial step towards the mechanistic modelling of organic amendment impacts on measurable soil carbon fractions and can operate as a new tool for designing effective carbon sequestration strategies and understanding organic amendment impacts.</div></div>\",\"PeriodicalId\":21888,\"journal\":{\"name\":\"Soil Biology & Biochemistry\",\"volume\":\"200 \",\"pages\":\"Article 109618\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Biology & Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038071724003079\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038071724003079","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
MiPrime: A model for the microbially mediated impacts of organic amendments on measurable soil organic carbon fractions and associated priming effects
Priming effects can influence the efficiency with which organic amendments sequester carbon in the soil. Yet, few soil models currently include priming effects. Those models that do are often based on operationally defined soil pools and implicitly allow only for positive priming effects. This limits the verification of model processes with experimental data and hinders the optimization of our carbon sequestration strategies. To address these shortcomings, we developed MiPrime, which offers a framework for the mechanistic modelling of organic amendment impacts on microbially mediated transformation of carbon fractions that are quantifiable through parsimonious soil extraction methods. MiPrime allows for assessment of organic amendment impacts on soil carbon dynamics, including priming effects, by simulating changes in mineralized, microbial biomass, dissolvable, hot water extractable and insoluble carbon fractions in soil exogenous (i.e. organic amendment-derived) and endogenous (i.e. soil) pools. After calibration of model parameters using Markov Chain Monte Carlo methods to incubation data of three types of isotopically labelled roadside grasses (a fresh grass product, a compost thereof, and a Bokashi-fermented product thereof), MiPrime was able to simulate changes in carbon fractions of the soil with a good degree of accuracy for five compositionally complex organic amendments, namely the three types of roadside grasses, as well as non-isotopically labelled wood chips and water weeds and reeds. Validation of the model results with experimental data demonstrates that changes in total carbon were very well predicted but that there is room for improvement in predicting mineralization rates and changes in dissolvable, hot water extractable and insoluble carbon fractions in the soil endogenous pool. MiPrime thus offers an initial step towards the mechanistic modelling of organic amendment impacts on measurable soil carbon fractions and can operate as a new tool for designing effective carbon sequestration strategies and understanding organic amendment impacts.
期刊介绍:
Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.