Dandan Wei, Changping Wang, Dasai Ban, Cong Wang, Xiaojun Liu, Lu Wang, Mingtao Chen, Siyu Ni, Dianwen Song, Huali Nie
{"title":"微量元素硒增强型基氏导丝具有更强的成骨和抗菌特性","authors":"Dandan Wei, Changping Wang, Dasai Ban, Cong Wang, Xiaojun Liu, Lu Wang, Mingtao Chen, Siyu Ni, Dianwen Song, Huali Nie","doi":"10.1016/j.jmst.2024.09.035","DOIUrl":null,"url":null,"abstract":"The Kirschner wire (K-wire) is widely used in orthopedic external fixation due to its versatility and clinical effectiveness. However, a significant challenge associated with its use is the potential for bacterial migration, subsequent infection, and dislodgement as the wire penetrates the skin and bone. This study introduces a novel bioactive material, selenium/calcium silicate (Se/β-CS), achieved by integrating selenium—an essential trace element in the human body—into bioceramic calcium silicate. This integration was accomplished using a combined chemical co-deposition method and redox reaction. Furthermore, a uniform and controllable Se/β-CS coating was applied to the K-wire's surface using the Langmuir-Blodgett technique. This coating gradually releases active components—Si, Ca, and Se—that effectively eliminate bacterial infections and promote osteointegration. The findings of this study offer promising opportunities for the use of robust and multifunctional coating materials on implantable devices, particularly within the fields of orthopedics, transplantation, and surgery.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"31 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trace element selenium–augmented Kirschner wire with enhanced osteogenetic and antibacterial properties\",\"authors\":\"Dandan Wei, Changping Wang, Dasai Ban, Cong Wang, Xiaojun Liu, Lu Wang, Mingtao Chen, Siyu Ni, Dianwen Song, Huali Nie\",\"doi\":\"10.1016/j.jmst.2024.09.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Kirschner wire (K-wire) is widely used in orthopedic external fixation due to its versatility and clinical effectiveness. However, a significant challenge associated with its use is the potential for bacterial migration, subsequent infection, and dislodgement as the wire penetrates the skin and bone. This study introduces a novel bioactive material, selenium/calcium silicate (Se/β-CS), achieved by integrating selenium—an essential trace element in the human body—into bioceramic calcium silicate. This integration was accomplished using a combined chemical co-deposition method and redox reaction. Furthermore, a uniform and controllable Se/β-CS coating was applied to the K-wire's surface using the Langmuir-Blodgett technique. This coating gradually releases active components—Si, Ca, and Se—that effectively eliminate bacterial infections and promote osteointegration. The findings of this study offer promising opportunities for the use of robust and multifunctional coating materials on implantable devices, particularly within the fields of orthopedics, transplantation, and surgery.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.09.035\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.09.035","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
克氏线(K-wire)因其多功能性和临床有效性而被广泛用于骨科外固定。然而,其使用过程中面临的一个重大挑战是,当钢丝穿透皮肤和骨骼时,可能会发生细菌迁移、继发感染和脱落。本研究介绍了一种新型生物活性材料--硒/硅酸钙(Se/β-CS),它是通过将硒--一种人体必需的微量元素--整合到生物陶瓷硅酸钙中而实现的。这种整合是通过化学共沉积法和氧化还原反应联合实现的。此外,还利用 Langmuir-Blodgett 技术在 K 线表面形成了一层均匀、可控的 Se/β-CS 涂层。这种涂层会逐渐释放出活性成分--硅、钙和硒,从而有效地消除细菌感染并促进骨结合。这项研究结果为在植入设备上使用坚固耐用的多功能涂层材料提供了良好的机遇,尤其是在整形外科、移植和外科领域。
Trace element selenium–augmented Kirschner wire with enhanced osteogenetic and antibacterial properties
The Kirschner wire (K-wire) is widely used in orthopedic external fixation due to its versatility and clinical effectiveness. However, a significant challenge associated with its use is the potential for bacterial migration, subsequent infection, and dislodgement as the wire penetrates the skin and bone. This study introduces a novel bioactive material, selenium/calcium silicate (Se/β-CS), achieved by integrating selenium—an essential trace element in the human body—into bioceramic calcium silicate. This integration was accomplished using a combined chemical co-deposition method and redox reaction. Furthermore, a uniform and controllable Se/β-CS coating was applied to the K-wire's surface using the Langmuir-Blodgett technique. This coating gradually releases active components—Si, Ca, and Se—that effectively eliminate bacterial infections and promote osteointegration. The findings of this study offer promising opportunities for the use of robust and multifunctional coating materials on implantable devices, particularly within the fields of orthopedics, transplantation, and surgery.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.