用于锌离子水电池的普鲁士蓝类似物:最新工艺和前景

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2024-10-19 DOI:10.1016/j.jmst.2024.10.002
Jiayao Wang, Zewei Hu, Yuju Qi, Chao Han, Kai Zhang, Weijie Li
{"title":"用于锌离子水电池的普鲁士蓝类似物:最新工艺和前景","authors":"Jiayao Wang, Zewei Hu, Yuju Qi, Chao Han, Kai Zhang, Weijie Li","doi":"10.1016/j.jmst.2024.10.002","DOIUrl":null,"url":null,"abstract":"Aqueous zinc-ion batteries (AZIBs) show great potential in the field of electrochemical energy storage with the advantages of high safety, low cost and environmental friendliness. Prussian blue analogues (PBAs) are considered as the highly promising cathode materials for AZIBs because of their low cost and high voltage potential. Its excellent electrochemical performance and sustainable energy storage capability provide a new direction and opportunity for the development of AZIBs technology. The practical application of PBAs in AZIBs, however, is restrained by its unstable cycle life deriving from PBAs’ inherent structure deficiencies and its dissolution in aqueous electrolyte. Based on the summary of series of literature, we will comprehensively introduce the PBAs as cathodes for AZIBs in this review. Firstly, some basic knowledge of PBAs is introduced, including structural characteristics, advantages and issues. Secondly, several commonly used modification methods to improve the properties of PBAs, as well as electrolytes to stabilize PBAs, are presented. Finally, the future research directions and commercial prospects of PBAs in AZIBs are proposed to encourage further exploration and promote technological innovation.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prussian blue analogues for aqueous zinc-ion batteries: Recent process and perspectives\",\"authors\":\"Jiayao Wang, Zewei Hu, Yuju Qi, Chao Han, Kai Zhang, Weijie Li\",\"doi\":\"10.1016/j.jmst.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous zinc-ion batteries (AZIBs) show great potential in the field of electrochemical energy storage with the advantages of high safety, low cost and environmental friendliness. Prussian blue analogues (PBAs) are considered as the highly promising cathode materials for AZIBs because of their low cost and high voltage potential. Its excellent electrochemical performance and sustainable energy storage capability provide a new direction and opportunity for the development of AZIBs technology. The practical application of PBAs in AZIBs, however, is restrained by its unstable cycle life deriving from PBAs’ inherent structure deficiencies and its dissolution in aqueous electrolyte. Based on the summary of series of literature, we will comprehensively introduce the PBAs as cathodes for AZIBs in this review. Firstly, some basic knowledge of PBAs is introduced, including structural characteristics, advantages and issues. Secondly, several commonly used modification methods to improve the properties of PBAs, as well as electrolytes to stabilize PBAs, are presented. Finally, the future research directions and commercial prospects of PBAs in AZIBs are proposed to encourage further exploration and promote technological innovation.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.10.002\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.10.002","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锌离子水电池(AZIBs)具有安全性高、成本低和环保等优点,在电化学储能领域显示出巨大的潜力。普鲁士蓝类似物(PBAs)因其低成本和高电压潜力而被认为是极具潜力的 AZIBs 正极材料。其优异的电化学性能和可持续的储能能力为 AZIBs 技术的发展提供了新的方向和机遇。然而,由于 PBAs 固有结构的缺陷及其在水性电解液中的溶解性,导致其循环寿命不稳定,从而制约了 PBAs 在 AZIBs 中的实际应用。在总结一系列文献的基础上,我们将在本综述中全面介绍作为 AZIB 阴极的 PBA。首先,介绍 PBA 的一些基本知识,包括结构特点、优点和问题。其次,介绍了几种常用的改性方法来改善 PBAs 的性能,以及稳定 PBAs 的电解质。最后,提出了 AZIB 中 PBA 的未来研究方向和商业前景,以鼓励进一步探索和促进技术创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prussian blue analogues for aqueous zinc-ion batteries: Recent process and perspectives
Aqueous zinc-ion batteries (AZIBs) show great potential in the field of electrochemical energy storage with the advantages of high safety, low cost and environmental friendliness. Prussian blue analogues (PBAs) are considered as the highly promising cathode materials for AZIBs because of their low cost and high voltage potential. Its excellent electrochemical performance and sustainable energy storage capability provide a new direction and opportunity for the development of AZIBs technology. The practical application of PBAs in AZIBs, however, is restrained by its unstable cycle life deriving from PBAs’ inherent structure deficiencies and its dissolution in aqueous electrolyte. Based on the summary of series of literature, we will comprehensively introduce the PBAs as cathodes for AZIBs in this review. Firstly, some basic knowledge of PBAs is introduced, including structural characteristics, advantages and issues. Secondly, several commonly used modification methods to improve the properties of PBAs, as well as electrolytes to stabilize PBAs, are presented. Finally, the future research directions and commercial prospects of PBAs in AZIBs are proposed to encourage further exploration and promote technological innovation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
A novel fine-grained TiZrCu alloy tailored for marine environment with high microbial corrosion-resistance Ultrastrong and ductile superalloy joints bonded with a novel composite interlayer modified by high entropy alloy Pioneering SubPc-Br/CdS S-scheme heterojunctions: Achieving superior photocatalytic oxidation through enhanced radical synergy and photocorrosion mitigation High volumetric-energy-density flexible supercapacitors based on PEDOT:PSS incorporated with carbon quantum dots hybrid electrodes A significant improvement in corrosion resistance and biocompatibility in ZrNbTiCrCu high-entropy films induced by the precipitation of Cu
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1