Linbin Zheng , Meng Li , Zhouyu Jiang , Junyan Fan , Zengbo Fang , Jihuai Zheng , Yan Cui
{"title":"新型 β-环糊精手性固定相的合成及其在评估戊唑醇在黑鳃蛙蝌蚪中的对映体选择性生物累积和消除行为中的应用","authors":"Linbin Zheng , Meng Li , Zhouyu Jiang , Junyan Fan , Zengbo Fang , Jihuai Zheng , Yan Cui","doi":"10.1016/j.aca.2024.343344","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The increased production and use of chiral pesticides will enhance their exposure in the environment. Chiral pesticides typically exhibit varied biological effects among these enantiomers. Therefore, it is very essential to develop and validate chiral analytical methods to investigate their potential ecological risks from a stereoselective perspective. Current separation of pesticides enantiomers relies extensively on chiral stationary phases (CSPs), while the development of β-Cyclodextrin derivatives CSPs become the research focus due to their great modifiability and excellent chiral recognition capabilities.</div></div><div><h3>Results</h3><div>A novel chiral stationary phase, 3,5-dichlorophenylaminomethyl-6-phenylenediamine-β-cyclodextrin chemically bonded silica gel (MPDCDA), was successfully prepared. Based on that, a stereoselective HPLC-MS/MS method was developed and validated for the determination of tebuconazole enantiomers in <em>Rana nigromaculata</em> tadpoles. After extraction by QuEChERS, the tebuconazole enantiomers were completely separated with the resolutions of 1.63 using the mobile phase of methanol-water (70/30, v/v). Good linearity (r > 0.9990) for both enantiomers over a concentration range of 0.20–500.0 ng/mL was obtained with the accuracy ranged from 6.7 % to 9.3 % and the intra-day and inter-day precisions below 6.2 % at three quality control levels. The proposed method was successfully applied in evaluating the enantioselective bioaccumulation and elimination profiles of tebuconazole in tadpoles. At the tested conditions, there was no significantly enantioselective difference in the bioaccumulation process for <em>S</em>- tebuconazole and <em>R</em>-tebuconazole. However, the elimination process of tebuconazole enantiomers was enantioselective with <em>R</em>-tebuconazole preferentially degraded.</div></div><div><h3>Significance</h3><div>This work provided an accurate risk assessment of chiral pesticides to non-target aquatic organisms from a stereoselective perspective. These findings would deepen our understanding of the potential ecological risks of chiral pesticides on aquatic organisms and provide scientific support for the protection of aquatic organisms and their ecological environments, as well as sustainable development.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1331 ","pages":"Article 343344"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of a novel β-cyclodextrin chiral stationary phase and its application to the evaluation of the enantioselective bioaccumulation and elimination behavior of tebuconazole in Rana nigromaculata tadpoles\",\"authors\":\"Linbin Zheng , Meng Li , Zhouyu Jiang , Junyan Fan , Zengbo Fang , Jihuai Zheng , Yan Cui\",\"doi\":\"10.1016/j.aca.2024.343344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>The increased production and use of chiral pesticides will enhance their exposure in the environment. Chiral pesticides typically exhibit varied biological effects among these enantiomers. Therefore, it is very essential to develop and validate chiral analytical methods to investigate their potential ecological risks from a stereoselective perspective. Current separation of pesticides enantiomers relies extensively on chiral stationary phases (CSPs), while the development of β-Cyclodextrin derivatives CSPs become the research focus due to their great modifiability and excellent chiral recognition capabilities.</div></div><div><h3>Results</h3><div>A novel chiral stationary phase, 3,5-dichlorophenylaminomethyl-6-phenylenediamine-β-cyclodextrin chemically bonded silica gel (MPDCDA), was successfully prepared. Based on that, a stereoselective HPLC-MS/MS method was developed and validated for the determination of tebuconazole enantiomers in <em>Rana nigromaculata</em> tadpoles. After extraction by QuEChERS, the tebuconazole enantiomers were completely separated with the resolutions of 1.63 using the mobile phase of methanol-water (70/30, v/v). Good linearity (r > 0.9990) for both enantiomers over a concentration range of 0.20–500.0 ng/mL was obtained with the accuracy ranged from 6.7 % to 9.3 % and the intra-day and inter-day precisions below 6.2 % at three quality control levels. The proposed method was successfully applied in evaluating the enantioselective bioaccumulation and elimination profiles of tebuconazole in tadpoles. At the tested conditions, there was no significantly enantioselective difference in the bioaccumulation process for <em>S</em>- tebuconazole and <em>R</em>-tebuconazole. However, the elimination process of tebuconazole enantiomers was enantioselective with <em>R</em>-tebuconazole preferentially degraded.</div></div><div><h3>Significance</h3><div>This work provided an accurate risk assessment of chiral pesticides to non-target aquatic organisms from a stereoselective perspective. These findings would deepen our understanding of the potential ecological risks of chiral pesticides on aquatic organisms and provide scientific support for the protection of aquatic organisms and their ecological environments, as well as sustainable development.</div></div>\",\"PeriodicalId\":240,\"journal\":{\"name\":\"Analytica Chimica Acta\",\"volume\":\"1331 \",\"pages\":\"Article 343344\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytica Chimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003267024011450\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003267024011450","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Synthesis of a novel β-cyclodextrin chiral stationary phase and its application to the evaluation of the enantioselective bioaccumulation and elimination behavior of tebuconazole in Rana nigromaculata tadpoles
Background
The increased production and use of chiral pesticides will enhance their exposure in the environment. Chiral pesticides typically exhibit varied biological effects among these enantiomers. Therefore, it is very essential to develop and validate chiral analytical methods to investigate their potential ecological risks from a stereoselective perspective. Current separation of pesticides enantiomers relies extensively on chiral stationary phases (CSPs), while the development of β-Cyclodextrin derivatives CSPs become the research focus due to their great modifiability and excellent chiral recognition capabilities.
Results
A novel chiral stationary phase, 3,5-dichlorophenylaminomethyl-6-phenylenediamine-β-cyclodextrin chemically bonded silica gel (MPDCDA), was successfully prepared. Based on that, a stereoselective HPLC-MS/MS method was developed and validated for the determination of tebuconazole enantiomers in Rana nigromaculata tadpoles. After extraction by QuEChERS, the tebuconazole enantiomers were completely separated with the resolutions of 1.63 using the mobile phase of methanol-water (70/30, v/v). Good linearity (r > 0.9990) for both enantiomers over a concentration range of 0.20–500.0 ng/mL was obtained with the accuracy ranged from 6.7 % to 9.3 % and the intra-day and inter-day precisions below 6.2 % at three quality control levels. The proposed method was successfully applied in evaluating the enantioselective bioaccumulation and elimination profiles of tebuconazole in tadpoles. At the tested conditions, there was no significantly enantioselective difference in the bioaccumulation process for S- tebuconazole and R-tebuconazole. However, the elimination process of tebuconazole enantiomers was enantioselective with R-tebuconazole preferentially degraded.
Significance
This work provided an accurate risk assessment of chiral pesticides to non-target aquatic organisms from a stereoselective perspective. These findings would deepen our understanding of the potential ecological risks of chiral pesticides on aquatic organisms and provide scientific support for the protection of aquatic organisms and their ecological environments, as well as sustainable development.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.