{"title":"基于扰动的超信道系统 SPM 和 XPM 联合补偿","authors":"Zonglong He;Ali Mirani;Magnus Karlsson;Jochen Schröder","doi":"10.1109/LPT.2024.3474479","DOIUrl":null,"url":null,"abstract":"In contrast to digital backpropagation (DBP), perturbation-based nonlinear compensation (PB-NLC) is a low-complexity alternative to mitigate fiber Kerr nonlinearity. In this letter, we experimentally demonstrate a novel receiver-side perturbation approach to cancel the self-phase modulation and cross-phase modulation for superchannel systems using three independent receivers. With the inverse perturbation theory, we develop a nonlinear compensation model that does not require knowing the transmitted symbols and therefore avoids the penalty from the estimation error. We implement the PB-NLC in a \n<inline-formula> <tex-math>$3\\times 24.5$ </tex-math></inline-formula>\n GBaud 64-QAM comb-based superchannel system spaced at 25 GHz. Compared to chromatic dispersion compensation, the full PB-NLC achieves a 0.2 dB Q2 factor gain after 1200 km transmission, which is equivalent to the single-channel DBP operating at 1 step per span.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"36 23","pages":"1349-1352"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perturbation-Based Joint SPM and XPM Compensation for Superchannel System\",\"authors\":\"Zonglong He;Ali Mirani;Magnus Karlsson;Jochen Schröder\",\"doi\":\"10.1109/LPT.2024.3474479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In contrast to digital backpropagation (DBP), perturbation-based nonlinear compensation (PB-NLC) is a low-complexity alternative to mitigate fiber Kerr nonlinearity. In this letter, we experimentally demonstrate a novel receiver-side perturbation approach to cancel the self-phase modulation and cross-phase modulation for superchannel systems using three independent receivers. With the inverse perturbation theory, we develop a nonlinear compensation model that does not require knowing the transmitted symbols and therefore avoids the penalty from the estimation error. We implement the PB-NLC in a \\n<inline-formula> <tex-math>$3\\\\times 24.5$ </tex-math></inline-formula>\\n GBaud 64-QAM comb-based superchannel system spaced at 25 GHz. Compared to chromatic dispersion compensation, the full PB-NLC achieves a 0.2 dB Q2 factor gain after 1200 km transmission, which is equivalent to the single-channel DBP operating at 1 step per span.\",\"PeriodicalId\":13065,\"journal\":{\"name\":\"IEEE Photonics Technology Letters\",\"volume\":\"36 23\",\"pages\":\"1349-1352\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Technology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10705362/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10705362/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Perturbation-Based Joint SPM and XPM Compensation for Superchannel System
In contrast to digital backpropagation (DBP), perturbation-based nonlinear compensation (PB-NLC) is a low-complexity alternative to mitigate fiber Kerr nonlinearity. In this letter, we experimentally demonstrate a novel receiver-side perturbation approach to cancel the self-phase modulation and cross-phase modulation for superchannel systems using three independent receivers. With the inverse perturbation theory, we develop a nonlinear compensation model that does not require knowing the transmitted symbols and therefore avoids the penalty from the estimation error. We implement the PB-NLC in a
$3\times 24.5$
GBaud 64-QAM comb-based superchannel system spaced at 25 GHz. Compared to chromatic dispersion compensation, the full PB-NLC achieves a 0.2 dB Q2 factor gain after 1200 km transmission, which is equivalent to the single-channel DBP operating at 1 step per span.
期刊介绍:
IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.