在 293 K 至 353 K 和 0.1 MPa 条件下纯 NaCl 和 CaCl2 混合水溶液的密度:分析数据与数值数据的综合比较

IF 2.9 2区 地球科学 Q3 ENERGY & FUELS Geothermal Energy Pub Date : 2024-10-19 DOI:10.1186/s40517-024-00318-1
Ulrike Hoffert, Laurent André, Guido Blöcher, Sylvain Guignot, Arnault Lassin, Harald Milsch, Ingo Sass
{"title":"在 293 K 至 353 K 和 0.1 MPa 条件下纯 NaCl 和 CaCl2 混合水溶液的密度:分析数据与数值数据的综合比较","authors":"Ulrike Hoffert,&nbsp;Laurent André,&nbsp;Guido Blöcher,&nbsp;Sylvain Guignot,&nbsp;Arnault Lassin,&nbsp;Harald Milsch,&nbsp;Ingo Sass","doi":"10.1186/s40517-024-00318-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study reports on newly acquired density data of synthetically prepared pure and mixed NaCl and CaCl<sub>2</sub> aqueous solutions that span a wide range of geothermally encountered concentrations and mixing ratios. The analytical data are provided for the temperature range of 293–353 K at ambient pressure. For the reproduction of that data, PHREESCALE was used. The predictive potential of this numerical tool regarding the density of geothermal fluids of known composition was the major target herein. As a result, the measured data are in good agreement with previous analytical studies found in the literature. Possible sources of errors are discussed in this paper. Density data of the mixed solutions at temperatures other than ambient are unique and close existing data gaps. The numerical model reproduces the newly measured and already existing density data within an error band of approximately 1%. For further use in geothermal applications, this can be considered an excellent agreement. Moreover, the model yields a direct calculation of density without the need to establish complex empirical equations of state and mixing rules. Finally, sensitivity calculations performed with a thermal–hydraulic (TH) numerical reservoir model demonstrate the required accuracy of fluid density for reliably predicting the long-term performance of deep geothermal energy systems. In terms of the productivity index and the timing of thermal breakthrough it shows that the present analytical and numerical uncertainty in density is small enough to reliably state both reservoir parameters.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"12 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00318-1","citationCount":"0","resultStr":"{\"title\":\"Density of pure and mixed NaCl and CaCl2 aqueous solutions at 293 K to 353 K and 0.1 MPa: an integrated comparison of analytical and numerical data\",\"authors\":\"Ulrike Hoffert,&nbsp;Laurent André,&nbsp;Guido Blöcher,&nbsp;Sylvain Guignot,&nbsp;Arnault Lassin,&nbsp;Harald Milsch,&nbsp;Ingo Sass\",\"doi\":\"10.1186/s40517-024-00318-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study reports on newly acquired density data of synthetically prepared pure and mixed NaCl and CaCl<sub>2</sub> aqueous solutions that span a wide range of geothermally encountered concentrations and mixing ratios. The analytical data are provided for the temperature range of 293–353 K at ambient pressure. For the reproduction of that data, PHREESCALE was used. The predictive potential of this numerical tool regarding the density of geothermal fluids of known composition was the major target herein. As a result, the measured data are in good agreement with previous analytical studies found in the literature. Possible sources of errors are discussed in this paper. Density data of the mixed solutions at temperatures other than ambient are unique and close existing data gaps. The numerical model reproduces the newly measured and already existing density data within an error band of approximately 1%. For further use in geothermal applications, this can be considered an excellent agreement. Moreover, the model yields a direct calculation of density without the need to establish complex empirical equations of state and mixing rules. Finally, sensitivity calculations performed with a thermal–hydraulic (TH) numerical reservoir model demonstrate the required accuracy of fluid density for reliably predicting the long-term performance of deep geothermal energy systems. In terms of the productivity index and the timing of thermal breakthrough it shows that the present analytical and numerical uncertainty in density is small enough to reliably state both reservoir parameters.</p></div>\",\"PeriodicalId\":48643,\"journal\":{\"name\":\"Geothermal Energy\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00318-1\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermal Energy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40517-024-00318-1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-024-00318-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究报告了新近获得的合成制备的纯净和混合氯化钠和氯化钙水溶液的密度数据,这些溶液的浓度和混合比在地热作用下的范围很广。提供的分析数据是在环境压力下的 293-353 K 温度范围内的数据。为了再现这些数据,使用了 PHREESCALE。该数值工具对已知成分的地热流体密度的预测潜力是本文的主要目标。因此,测量数据与之前文献中的分析研究结果非常吻合。本文讨论了可能的误差来源。非环境温度下混合溶液的密度数据是独一无二的,填补了现有数据空白。数值模型再现了新测量的和已有的密度数据,误差范围约为 1%。对于地热应用的进一步使用,这可以被视为极佳的一致性。此外,该模型可直接计算密度,而无需建立复杂的经验状态方程和混合规则。最后,利用热-水力(TH)数值储层模型进行的敏感性计算表明,流体密度的精确性是可靠预测深层地热能源系统长期性能所必需的。就生产力指数和热突破时间而言,它表明目前密度的分析和数值不确定性很小,足以可靠地说明这两个储层参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Density of pure and mixed NaCl and CaCl2 aqueous solutions at 293 K to 353 K and 0.1 MPa: an integrated comparison of analytical and numerical data

This study reports on newly acquired density data of synthetically prepared pure and mixed NaCl and CaCl2 aqueous solutions that span a wide range of geothermally encountered concentrations and mixing ratios. The analytical data are provided for the temperature range of 293–353 K at ambient pressure. For the reproduction of that data, PHREESCALE was used. The predictive potential of this numerical tool regarding the density of geothermal fluids of known composition was the major target herein. As a result, the measured data are in good agreement with previous analytical studies found in the literature. Possible sources of errors are discussed in this paper. Density data of the mixed solutions at temperatures other than ambient are unique and close existing data gaps. The numerical model reproduces the newly measured and already existing density data within an error band of approximately 1%. For further use in geothermal applications, this can be considered an excellent agreement. Moreover, the model yields a direct calculation of density without the need to establish complex empirical equations of state and mixing rules. Finally, sensitivity calculations performed with a thermal–hydraulic (TH) numerical reservoir model demonstrate the required accuracy of fluid density for reliably predicting the long-term performance of deep geothermal energy systems. In terms of the productivity index and the timing of thermal breakthrough it shows that the present analytical and numerical uncertainty in density is small enough to reliably state both reservoir parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geothermal Energy
Geothermal Energy Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍: Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.
期刊最新文献
Feasibility of coaxial deep borehole heat exchangers in southern California Controls of low injectivity caused by interaction of reservoir and clogging processes in a sedimentary geothermal aquifer (Mezőberény, Hungary) Density of pure and mixed NaCl and CaCl2 aqueous solutions at 293 K to 353 K and 0.1 MPa: an integrated comparison of analytical and numerical data Modeling unobserved geothermal structures using a physics-informed neural network with transfer learning of prior knowledge Methods of grout quality measurement in borehole exchangers for heat pumps and their rehabilitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1