M-Net:基于增强型灰狼优化算法的改进型卷积神经网络的皮肤癌分类方法

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Imaging Systems and Technology Pub Date : 2024-10-19 DOI:10.1002/ima.23202
Zhinan Xu, Xiaoxia Zhang, Luzhou Liu
{"title":"M-Net:基于增强型灰狼优化算法的改进型卷积神经网络的皮肤癌分类方法","authors":"Zhinan Xu,&nbsp;Xiaoxia Zhang,&nbsp;Luzhou Liu","doi":"10.1002/ima.23202","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Skin cancer is a common malignant tumor causing tens of thousands of deaths each year, making early detection essential for better treatment outcomes. However, the similar visual characteristics of skin lesions make it challenging to accurately differentiate between lesion types. With advancements in deep learning, researchers have increasingly turned to convolutional neural networks for skin cancer detection and classification. In this article, an improved skin cancer classification model M-Net is proposed, and the enhanced gray wolf optimization algorithm is combined to improve the classification performance. The gray wolf optimization algorithm guides the wolf pack to prey through a multileader structure and gradually converges through the encirclement and pursuit mechanism, so as to perform a more detailed search in the later stage. To further improve the performance of the gray wolf optimization, this study introduces the simulated annealing algorithm to avoid falling into the local optimal state and expands the search range by improving the search mechanism, thus enhancing the global optimization ability of the algorithm. The M-Net model significantly improves the accuracy of classification by extracting features of skin lesions and optimizing parameters with the enhanced gray wolf optimization algorithm. The experimental results based on the ISIC 2018 dataset show that compared with the baseline model, the feature extraction network of the model has achieved a significant improvement in accuracy. The classification performance of M-Net is excellent in multiple indicators, with accuracy, precision, recall, and F1 score reaching 0.891, 0.857, 0.895, and 0.872, respectively. In addition, the modular design of M-Net enables it to flexibly adjust feature extraction and classification modules to adapt to different classification tasks, showing great scalability and applicability. In general, the model proposed in this article performs well in the classification of skin lesions, has broad clinical application prospects, and provides strong support for promoting the diagnosis of skin diseases.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M-Net: A Skin Cancer Classification With Improved Convolutional Neural Network Based on the Enhanced Gray Wolf Optimization Algorithm\",\"authors\":\"Zhinan Xu,&nbsp;Xiaoxia Zhang,&nbsp;Luzhou Liu\",\"doi\":\"10.1002/ima.23202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Skin cancer is a common malignant tumor causing tens of thousands of deaths each year, making early detection essential for better treatment outcomes. However, the similar visual characteristics of skin lesions make it challenging to accurately differentiate between lesion types. With advancements in deep learning, researchers have increasingly turned to convolutional neural networks for skin cancer detection and classification. In this article, an improved skin cancer classification model M-Net is proposed, and the enhanced gray wolf optimization algorithm is combined to improve the classification performance. The gray wolf optimization algorithm guides the wolf pack to prey through a multileader structure and gradually converges through the encirclement and pursuit mechanism, so as to perform a more detailed search in the later stage. To further improve the performance of the gray wolf optimization, this study introduces the simulated annealing algorithm to avoid falling into the local optimal state and expands the search range by improving the search mechanism, thus enhancing the global optimization ability of the algorithm. The M-Net model significantly improves the accuracy of classification by extracting features of skin lesions and optimizing parameters with the enhanced gray wolf optimization algorithm. The experimental results based on the ISIC 2018 dataset show that compared with the baseline model, the feature extraction network of the model has achieved a significant improvement in accuracy. The classification performance of M-Net is excellent in multiple indicators, with accuracy, precision, recall, and F1 score reaching 0.891, 0.857, 0.895, and 0.872, respectively. In addition, the modular design of M-Net enables it to flexibly adjust feature extraction and classification modules to adapt to different classification tasks, showing great scalability and applicability. In general, the model proposed in this article performs well in the classification of skin lesions, has broad clinical application prospects, and provides strong support for promoting the diagnosis of skin diseases.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"34 6\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.23202\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23202","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

皮肤癌是一种常见的恶性肿瘤,每年导致数万人死亡,因此早期发现对获得更好的治疗效果至关重要。然而,由于皮肤病变具有相似的视觉特征,因此准确区分病变类型具有挑战性。随着深度学习技术的进步,研究人员越来越多地将卷积神经网络用于皮肤癌检测和分类。本文提出了一种改进的皮肤癌分类模型 M-Net,并结合增强型灰狼优化算法来提高分类性能。灰狼优化算法通过多头领结构引导狼群捕食,并通过包围和追逐机制逐渐收敛,从而在后期进行更细致的搜索。为了进一步提高灰狼优化的性能,本研究引入了模拟退火算法,避免陷入局部最优状态,并通过改进搜索机制扩大搜索范围,从而提高算法的全局优化能力。M-Net 模型通过提取皮损特征并利用增强型灰狼优化算法优化参数,大大提高了分类的准确性。基于 ISIC 2018 数据集的实验结果表明,与基线模型相比,该模型的特征提取网络实现了准确率的显著提升。M-Net的分类性能在多个指标上表现优异,准确率、精度、召回率和F1得分分别达到0.891、0.857、0.895和0.872。此外,M-Net 的模块化设计使其能够灵活调整特征提取和分类模块,以适应不同的分类任务,表现出很强的可扩展性和适用性。总的来说,本文提出的模型在皮损分类中表现良好,具有广阔的临床应用前景,为促进皮肤病的诊断提供了有力的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
M-Net: A Skin Cancer Classification With Improved Convolutional Neural Network Based on the Enhanced Gray Wolf Optimization Algorithm

Skin cancer is a common malignant tumor causing tens of thousands of deaths each year, making early detection essential for better treatment outcomes. However, the similar visual characteristics of skin lesions make it challenging to accurately differentiate between lesion types. With advancements in deep learning, researchers have increasingly turned to convolutional neural networks for skin cancer detection and classification. In this article, an improved skin cancer classification model M-Net is proposed, and the enhanced gray wolf optimization algorithm is combined to improve the classification performance. The gray wolf optimization algorithm guides the wolf pack to prey through a multileader structure and gradually converges through the encirclement and pursuit mechanism, so as to perform a more detailed search in the later stage. To further improve the performance of the gray wolf optimization, this study introduces the simulated annealing algorithm to avoid falling into the local optimal state and expands the search range by improving the search mechanism, thus enhancing the global optimization ability of the algorithm. The M-Net model significantly improves the accuracy of classification by extracting features of skin lesions and optimizing parameters with the enhanced gray wolf optimization algorithm. The experimental results based on the ISIC 2018 dataset show that compared with the baseline model, the feature extraction network of the model has achieved a significant improvement in accuracy. The classification performance of M-Net is excellent in multiple indicators, with accuracy, precision, recall, and F1 score reaching 0.891, 0.857, 0.895, and 0.872, respectively. In addition, the modular design of M-Net enables it to flexibly adjust feature extraction and classification modules to adapt to different classification tasks, showing great scalability and applicability. In general, the model proposed in this article performs well in the classification of skin lesions, has broad clinical application prospects, and provides strong support for promoting the diagnosis of skin diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
期刊最新文献
A Novel Edge-Enhanced Networks for Optic Disc and Optic Cup Segmentation Relation Explore Convolutional Block Attention Module for Skin Lesion Classification Interactive Pulmonary Lobe Segmentation in CT Images Based on Oriented Derivative of Stick Filter and Surface Fitting Model Microaneurysm Detection With Multiscale Attention and Trident RPN C-TUnet: A CNN-Transformer Architecture-Based Ultrasound Breast Image Classification Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1