Pengfei Xue, Liao Chang, Zhaowen Pei, Richard J. Harrison
{"title":"磁化石矫顽力成分的起源:来自实验观测和微磁计算耦合的制约因素","authors":"Pengfei Xue, Liao Chang, Zhaowen Pei, Richard J. Harrison","doi":"10.1029/2023JB028501","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Biogenic magnetite crystals produced by magnetotactic bacteria (MTB) and associated magnetofossils in sediments are characterized by variable morphologies, grain sizes, and chain structures. Magnetofossils are widely used in paleomagnetic and paleoenvironmental studies, but the complex magnetofossil shapes and particle arrangements significantly affect magnetic properties, hampering their magnetic detection and proxy interpretation. Here we perform coupled experimental and micromagnetic modeling analyses of typical magnetofossil-rich sediments, where the effects of magnetofossil crystal forms and microstructures on magnetic properties can be quantitatively separated. Since the in situ magnetofossil chain structures in sediments remain poorly known, we compare results from magnetic measurements and micromagnetic simulations based on realistic magnetofossil shapes and grain size distributions. Our results suggest that bullet-shaped magnetofossils certainly contribute to the biogenic hard (BH) coercivity component with a minor contribution from elongated prismatic particles, and collapsed equidimensional grains to the biogenic soft (BS) component. Micromagnetic simulations with different collapse models of bullet-shaped magnetofossils produce variable FORC (first-order reversal curve) central-ridge contributions with similar coercivity distributions. Sensitivity test suggests that samples containing different forms of magnetofossils can produce the BH coercivity component if the proportion of the bullet-shaped particles is more than ∼2%. Magnetofossil assemblages with a higher proportion of bullet-shaped particles have higher coercivities, squareness ratios, and larger BH contents. Our data shed new light on understanding the origin of magnetofossil coercivity components and the in situ magnetofossil microstructures in sediments, which is widely useful for interpreting magnetofossil proxy signals in geological records.</p>\n </section>\n </div>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"129 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Origin of Magnetofossil Coercivity Components: Constraints From Coupled Experimental Observations and Micromagnetic Calculations\",\"authors\":\"Pengfei Xue, Liao Chang, Zhaowen Pei, Richard J. Harrison\",\"doi\":\"10.1029/2023JB028501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Biogenic magnetite crystals produced by magnetotactic bacteria (MTB) and associated magnetofossils in sediments are characterized by variable morphologies, grain sizes, and chain structures. Magnetofossils are widely used in paleomagnetic and paleoenvironmental studies, but the complex magnetofossil shapes and particle arrangements significantly affect magnetic properties, hampering their magnetic detection and proxy interpretation. Here we perform coupled experimental and micromagnetic modeling analyses of typical magnetofossil-rich sediments, where the effects of magnetofossil crystal forms and microstructures on magnetic properties can be quantitatively separated. Since the in situ magnetofossil chain structures in sediments remain poorly known, we compare results from magnetic measurements and micromagnetic simulations based on realistic magnetofossil shapes and grain size distributions. Our results suggest that bullet-shaped magnetofossils certainly contribute to the biogenic hard (BH) coercivity component with a minor contribution from elongated prismatic particles, and collapsed equidimensional grains to the biogenic soft (BS) component. Micromagnetic simulations with different collapse models of bullet-shaped magnetofossils produce variable FORC (first-order reversal curve) central-ridge contributions with similar coercivity distributions. Sensitivity test suggests that samples containing different forms of magnetofossils can produce the BH coercivity component if the proportion of the bullet-shaped particles is more than ∼2%. Magnetofossil assemblages with a higher proportion of bullet-shaped particles have higher coercivities, squareness ratios, and larger BH contents. Our data shed new light on understanding the origin of magnetofossil coercivity components and the in situ magnetofossil microstructures in sediments, which is widely useful for interpreting magnetofossil proxy signals in geological records.</p>\\n </section>\\n </div>\",\"PeriodicalId\":15864,\"journal\":{\"name\":\"Journal of Geophysical Research: Solid Earth\",\"volume\":\"129 10\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023JB028501\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JB028501","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The Origin of Magnetofossil Coercivity Components: Constraints From Coupled Experimental Observations and Micromagnetic Calculations
Biogenic magnetite crystals produced by magnetotactic bacteria (MTB) and associated magnetofossils in sediments are characterized by variable morphologies, grain sizes, and chain structures. Magnetofossils are widely used in paleomagnetic and paleoenvironmental studies, but the complex magnetofossil shapes and particle arrangements significantly affect magnetic properties, hampering their magnetic detection and proxy interpretation. Here we perform coupled experimental and micromagnetic modeling analyses of typical magnetofossil-rich sediments, where the effects of magnetofossil crystal forms and microstructures on magnetic properties can be quantitatively separated. Since the in situ magnetofossil chain structures in sediments remain poorly known, we compare results from magnetic measurements and micromagnetic simulations based on realistic magnetofossil shapes and grain size distributions. Our results suggest that bullet-shaped magnetofossils certainly contribute to the biogenic hard (BH) coercivity component with a minor contribution from elongated prismatic particles, and collapsed equidimensional grains to the biogenic soft (BS) component. Micromagnetic simulations with different collapse models of bullet-shaped magnetofossils produce variable FORC (first-order reversal curve) central-ridge contributions with similar coercivity distributions. Sensitivity test suggests that samples containing different forms of magnetofossils can produce the BH coercivity component if the proportion of the bullet-shaped particles is more than ∼2%. Magnetofossil assemblages with a higher proportion of bullet-shaped particles have higher coercivities, squareness ratios, and larger BH contents. Our data shed new light on understanding the origin of magnetofossil coercivity components and the in situ magnetofossil microstructures in sediments, which is widely useful for interpreting magnetofossil proxy signals in geological records.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.