Safaa E. Seif, Wagnat W. Wardakhan, Rasha A. Hassan, Amr M. Abdou, Zeinab Mahmoud
{"title":"通过调节和抑制突变的 B-RAF 信号通路,具有良好抗癌活性的新型 S-取代-3-苯基四氢苯并[4,5]噻吩并[2,3-d]嘧啶-4(3H)-酮支架","authors":"Safaa E. Seif, Wagnat W. Wardakhan, Rasha A. Hassan, Amr M. Abdou, Zeinab Mahmoud","doi":"10.1002/ddr.70007","DOIUrl":null,"url":null,"abstract":"<p>Novel 3-phenyltetrahydrobenzo[4,5]thieno[2,3-<i>d</i>]pyrimidine derivatives were synthesized and screened for their antiproliferative activity against a panel of 60 cancer cell lines. Derivatives <b>5b</b>, <b>5f</b>, and <b>9c</b> showed significant antitumor activity at a single dose with mean growth inhibition of 55.62%, 55.79%, and 71.40%, respectively. These compounds were further investigated against HCT-116, colon cancer cell line, and FHC, normal colon cell line. Compound <b>9c</b> showed the highest activity with IC<sub>50</sub> = 0.904 ± 0.03 µM and SI = 20.42 excelling doxorubicin which scored IC<sub>50</sub> = 2.556 ± 0.09 µM and SI = 6.19. Compound <b>9c</b> was also the most potent against B-RAF<sup>WT</sup> and mutated B-RAF<sup>V600E</sup> with IC<sub>50</sub> = 0.145 ± 0.005 and 0.042 ± 0.002 µM, respectively in comparison with vemurafenib with IC<sub>50</sub> = 0.229 ± 0.008 and 0.038 ± 0.001 µM, respectively. The cell cycle analysis showed that <b>9c</b> increased the cell population and induced an arrest in the cell cycle of HCT-116 cancer cells at the G0-G1 stage with 1.23-fold. Apoptosis evaluation showed that compound <b>9c</b> displayed an 18.18-fold elevation in total apoptosis of HCT-116 cancer cells in comparison to the control. Compound <b>9c</b> increased the content of caspase-3 by 3.52-fold versus the control. A molecular modeling study determined the binding profile and interaction of <b>9c</b> with the B-RAF active site.</p>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"85 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New S-substituted-3-phenyltetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one scaffold with promising anticancer activity profile through the regulation and inhibition of mutated B-RAF signaling pathway\",\"authors\":\"Safaa E. Seif, Wagnat W. Wardakhan, Rasha A. Hassan, Amr M. Abdou, Zeinab Mahmoud\",\"doi\":\"10.1002/ddr.70007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Novel 3-phenyltetrahydrobenzo[4,5]thieno[2,3-<i>d</i>]pyrimidine derivatives were synthesized and screened for their antiproliferative activity against a panel of 60 cancer cell lines. Derivatives <b>5b</b>, <b>5f</b>, and <b>9c</b> showed significant antitumor activity at a single dose with mean growth inhibition of 55.62%, 55.79%, and 71.40%, respectively. These compounds were further investigated against HCT-116, colon cancer cell line, and FHC, normal colon cell line. Compound <b>9c</b> showed the highest activity with IC<sub>50</sub> = 0.904 ± 0.03 µM and SI = 20.42 excelling doxorubicin which scored IC<sub>50</sub> = 2.556 ± 0.09 µM and SI = 6.19. Compound <b>9c</b> was also the most potent against B-RAF<sup>WT</sup> and mutated B-RAF<sup>V600E</sup> with IC<sub>50</sub> = 0.145 ± 0.005 and 0.042 ± 0.002 µM, respectively in comparison with vemurafenib with IC<sub>50</sub> = 0.229 ± 0.008 and 0.038 ± 0.001 µM, respectively. The cell cycle analysis showed that <b>9c</b> increased the cell population and induced an arrest in the cell cycle of HCT-116 cancer cells at the G0-G1 stage with 1.23-fold. Apoptosis evaluation showed that compound <b>9c</b> displayed an 18.18-fold elevation in total apoptosis of HCT-116 cancer cells in comparison to the control. Compound <b>9c</b> increased the content of caspase-3 by 3.52-fold versus the control. A molecular modeling study determined the binding profile and interaction of <b>9c</b> with the B-RAF active site.</p>\",\"PeriodicalId\":11291,\"journal\":{\"name\":\"Drug Development Research\",\"volume\":\"85 7\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Development Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70007\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70007","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
New S-substituted-3-phenyltetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one scaffold with promising anticancer activity profile through the regulation and inhibition of mutated B-RAF signaling pathway
Novel 3-phenyltetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives were synthesized and screened for their antiproliferative activity against a panel of 60 cancer cell lines. Derivatives 5b, 5f, and 9c showed significant antitumor activity at a single dose with mean growth inhibition of 55.62%, 55.79%, and 71.40%, respectively. These compounds were further investigated against HCT-116, colon cancer cell line, and FHC, normal colon cell line. Compound 9c showed the highest activity with IC50 = 0.904 ± 0.03 µM and SI = 20.42 excelling doxorubicin which scored IC50 = 2.556 ± 0.09 µM and SI = 6.19. Compound 9c was also the most potent against B-RAFWT and mutated B-RAFV600E with IC50 = 0.145 ± 0.005 and 0.042 ± 0.002 µM, respectively in comparison with vemurafenib with IC50 = 0.229 ± 0.008 and 0.038 ± 0.001 µM, respectively. The cell cycle analysis showed that 9c increased the cell population and induced an arrest in the cell cycle of HCT-116 cancer cells at the G0-G1 stage with 1.23-fold. Apoptosis evaluation showed that compound 9c displayed an 18.18-fold elevation in total apoptosis of HCT-116 cancer cells in comparison to the control. Compound 9c increased the content of caspase-3 by 3.52-fold versus the control. A molecular modeling study determined the binding profile and interaction of 9c with the B-RAF active site.
期刊介绍:
Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.