在官能团效应的介导下,通过蒸发离子交换加速低温低垢盐水浓缩

Hao Chen, Arup K. SenGupta
{"title":"在官能团效应的介导下,通过蒸发离子交换加速低温低垢盐水浓缩","authors":"Hao Chen, Arup K. SenGupta","doi":"10.1038/s44221-024-00305-7","DOIUrl":null,"url":null,"abstract":"Achieving brine concentration by membrane distillation or the various humidification–dehumidification processes that are currently available always requires a thermal energy input and an elevated temperature. In this study, we developed a brine concentration process mediated by the unique osmotic and evaporation properties of high-capacity ion exchange resins. The evaporative ion exchange process consists of two steps. First, when a concentrated salt solution is brought into contact with a relatively dry, high-capacity polymeric ion exchanger, water selectively permeates into the ion exchanger phase through osmosis and the resin swells. In the second step, water evaporates when the swollen ion exchanger is brought into contact with air with low relative humidity and the resin shrinks. Here we show that, with hypersaline produced water from Marcellus gas shale, this evaporative ion exchange process attained total dissolved solids greater than 400,000 mg l−1, leading to the precipitation/crystallization of barium and sodium chloride at ambient temperature without causing any fouling of the ion exchange resins. The evaporative ion exchange process developed in this study achieves brine concentration at ambient temperature without fouling, providing a non-thermal brine concentration technology towards zero liquid discharge.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 10","pages":"1009-1018"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated low-temperature, low-fouling brine concentration through evaporative ion exchange mediated by the effect of functional groups\",\"authors\":\"Hao Chen, Arup K. SenGupta\",\"doi\":\"10.1038/s44221-024-00305-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving brine concentration by membrane distillation or the various humidification–dehumidification processes that are currently available always requires a thermal energy input and an elevated temperature. In this study, we developed a brine concentration process mediated by the unique osmotic and evaporation properties of high-capacity ion exchange resins. The evaporative ion exchange process consists of two steps. First, when a concentrated salt solution is brought into contact with a relatively dry, high-capacity polymeric ion exchanger, water selectively permeates into the ion exchanger phase through osmosis and the resin swells. In the second step, water evaporates when the swollen ion exchanger is brought into contact with air with low relative humidity and the resin shrinks. Here we show that, with hypersaline produced water from Marcellus gas shale, this evaporative ion exchange process attained total dissolved solids greater than 400,000 mg l−1, leading to the precipitation/crystallization of barium and sodium chloride at ambient temperature without causing any fouling of the ion exchange resins. The evaporative ion exchange process developed in this study achieves brine concentration at ambient temperature without fouling, providing a non-thermal brine concentration technology towards zero liquid discharge.\",\"PeriodicalId\":74252,\"journal\":{\"name\":\"Nature water\",\"volume\":\"2 10\",\"pages\":\"1009-1018\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44221-024-00305-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature water","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44221-024-00305-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过膜蒸馏或现有的各种加湿-除湿工艺实现盐水浓缩,始终需要热能输入和较高的温度。在这项研究中,我们利用高容量离子交换树脂独特的渗透和蒸发特性,开发了一种盐水浓缩工艺。蒸发离子交换过程包括两个步骤。首先,当浓盐溶液与相对干燥的高容量聚合物离子交换树脂接触时,水通过渗透作用选择性地渗入离子交换树脂相,树脂膨胀。在第二步中,当膨胀的离子交换剂与相对湿度较低的空气接触时,水分蒸发,树脂收缩。在这里,我们展示了在使用马塞勒斯页岩气的高盐度产水时,这种蒸发离子交换工艺可使溶解固体总量超过 400,000 毫克/升,从而在环境温度下沉淀/结晶出氯化钡和氯化钠,而不会造成离子交换树脂的任何污垢。本研究开发的蒸发离子交换工艺可在常温下实现盐水浓缩,且不会造成结垢,为实现零液体排放提供了一种非热盐水浓缩技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerated low-temperature, low-fouling brine concentration through evaporative ion exchange mediated by the effect of functional groups
Achieving brine concentration by membrane distillation or the various humidification–dehumidification processes that are currently available always requires a thermal energy input and an elevated temperature. In this study, we developed a brine concentration process mediated by the unique osmotic and evaporation properties of high-capacity ion exchange resins. The evaporative ion exchange process consists of two steps. First, when a concentrated salt solution is brought into contact with a relatively dry, high-capacity polymeric ion exchanger, water selectively permeates into the ion exchanger phase through osmosis and the resin swells. In the second step, water evaporates when the swollen ion exchanger is brought into contact with air with low relative humidity and the resin shrinks. Here we show that, with hypersaline produced water from Marcellus gas shale, this evaporative ion exchange process attained total dissolved solids greater than 400,000 mg l−1, leading to the precipitation/crystallization of barium and sodium chloride at ambient temperature without causing any fouling of the ion exchange resins. The evaporative ion exchange process developed in this study achieves brine concentration at ambient temperature without fouling, providing a non-thermal brine concentration technology towards zero liquid discharge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Drinking water and the law Late lessons from early warnings on PFAS Daily sampling reveals household-specific water microbiome signatures and shared antimicrobial resistomes in premise plumbing PFAS concentration and destruction A quadrillion little pieces of plastic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1