可生物降解的微塑料对环境的影响

Zhengyin Piao, Amma Asantewaa Agyei Boakye, Yuan Yao
{"title":"可生物降解的微塑料对环境的影响","authors":"Zhengyin Piao, Amma Asantewaa Agyei Boakye, Yuan Yao","doi":"10.1038/s44286-024-00127-0","DOIUrl":null,"url":null,"abstract":"Biodegradable plastics, perceived as ‘environmentally friendly’ materials, may end up in natural environments. This impact is often overlooked in the literature due to a lack of assessment methods. This study develops an integrated life cycle impact assessment methodology to assess the climate-change and aquatic-ecotoxicity impacts of biodegradable microplastics in freshwater ecosystems. Our results reveal that highly biodegradable microplastics have lower aquatic ecotoxicity but higher greenhouse gas (GHG) emissions. The extent of burden shifting depends on microplastic size and density. Plastic biodegradation in natural environments can result in higher GHG emissions than biodegradation in engineered end of life (for example, anaerobic digestion), contributing substantially to the life cycle GHG emissions of biodegradable plastics (excluding the use phase). A sensitivity analysis identified critical biodegradation rates for different plastic sizes that result in maximum GHG emissions. This work advances understanding of the environmental impacts of biodegradable plastics, providing an approach for the assessment and design of future plastics. Biodegradable plastics, often considered environmentally friendly, may contribute to environmental impacts in natural ecosystems, which are not fully understood due to inadequate assessment methods. The authors develop a life cycle impact assessment method to evaluate the climate-change and aquatic-ecotoxicity impacts of biodegradable microplastics in freshwater environments and support the design of future plastics.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 10","pages":"661-669"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00127-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Environmental impacts of biodegradable microplastics\",\"authors\":\"Zhengyin Piao, Amma Asantewaa Agyei Boakye, Yuan Yao\",\"doi\":\"10.1038/s44286-024-00127-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biodegradable plastics, perceived as ‘environmentally friendly’ materials, may end up in natural environments. This impact is often overlooked in the literature due to a lack of assessment methods. This study develops an integrated life cycle impact assessment methodology to assess the climate-change and aquatic-ecotoxicity impacts of biodegradable microplastics in freshwater ecosystems. Our results reveal that highly biodegradable microplastics have lower aquatic ecotoxicity but higher greenhouse gas (GHG) emissions. The extent of burden shifting depends on microplastic size and density. Plastic biodegradation in natural environments can result in higher GHG emissions than biodegradation in engineered end of life (for example, anaerobic digestion), contributing substantially to the life cycle GHG emissions of biodegradable plastics (excluding the use phase). A sensitivity analysis identified critical biodegradation rates for different plastic sizes that result in maximum GHG emissions. This work advances understanding of the environmental impacts of biodegradable plastics, providing an approach for the assessment and design of future plastics. Biodegradable plastics, often considered environmentally friendly, may contribute to environmental impacts in natural ecosystems, which are not fully understood due to inadequate assessment methods. The authors develop a life cycle impact assessment method to evaluate the climate-change and aquatic-ecotoxicity impacts of biodegradable microplastics in freshwater environments and support the design of future plastics.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":\"1 10\",\"pages\":\"661-669\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44286-024-00127-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-024-00127-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00127-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

被视为 "环保 "材料的生物降解塑料最终可能会进入自然环境。由于缺乏评估方法,这种影响往往在文献中被忽视。本研究开发了一种综合生命周期影响评估方法,用于评估生物可降解塑料对淡水生态系统中气候变化和水生生态毒性的影响。我们的研究结果表明,高生物降解性微塑料的水生生态毒性较低,但温室气体(GHG)排放量较高。负担转移的程度取决于微塑料的尺寸和密度。塑料在自然环境中的生物降解会比在工程生命末期(例如厌氧消化)的生物降解产生更高的温室气体排放,从而大大增加了可降解塑料生命周期(不包括使用阶段)的温室气体排放量。一项敏感性分析确定了不同尺寸塑料的临界生物降解率,这些生物降解率会导致最大的温室气体排放量。这项研究加深了人们对生物降解塑料环境影响的认识,为未来塑料的评估和设计提供了一种方法。生物降解塑料通常被认为是环境友好型的,但可能会对自然生态系统造成环境影响,而由于评估方法不足,人们对这些影响还没有充分了解。作者开发了一种生命周期影响评估方法,用于评估生物可降解塑料对淡水环境中气候变化和水生生态毒性的影响,并为未来塑料的设计提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Environmental impacts of biodegradable microplastics
Biodegradable plastics, perceived as ‘environmentally friendly’ materials, may end up in natural environments. This impact is often overlooked in the literature due to a lack of assessment methods. This study develops an integrated life cycle impact assessment methodology to assess the climate-change and aquatic-ecotoxicity impacts of biodegradable microplastics in freshwater ecosystems. Our results reveal that highly biodegradable microplastics have lower aquatic ecotoxicity but higher greenhouse gas (GHG) emissions. The extent of burden shifting depends on microplastic size and density. Plastic biodegradation in natural environments can result in higher GHG emissions than biodegradation in engineered end of life (for example, anaerobic digestion), contributing substantially to the life cycle GHG emissions of biodegradable plastics (excluding the use phase). A sensitivity analysis identified critical biodegradation rates for different plastic sizes that result in maximum GHG emissions. This work advances understanding of the environmental impacts of biodegradable plastics, providing an approach for the assessment and design of future plastics. Biodegradable plastics, often considered environmentally friendly, may contribute to environmental impacts in natural ecosystems, which are not fully understood due to inadequate assessment methods. The authors develop a life cycle impact assessment method to evaluate the climate-change and aquatic-ecotoxicity impacts of biodegradable microplastics in freshwater environments and support the design of future plastics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biodegrading living plastics Reducing desalination energy consumption Recycle, reduce, reform and close the loop Queue in the surfactant molecules Encouraging activity in molecular thermodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1