通过流量指令电流控制直接驱动光伏电渗析技术

Jonathan Tae-Yoon Bessette, Shane Richard Pratt, Amos G. Winter V
{"title":"通过流量指令电流控制直接驱动光伏电渗析技术","authors":"Jonathan Tae-Yoon Bessette, Shane Richard Pratt, Amos G. Winter V","doi":"10.1038/s44221-024-00314-6","DOIUrl":null,"url":null,"abstract":"Renewable powered, brackish groundwater desalination is an underutilized resource in the developing world, where there are unreliable energy sources and reliance on increasingly saline groundwater. Traditional renewable desalination technologies require sizable energy storage for sufficient water production, leading to increased cost, maintenance and complexity. We theorize and demonstrate a simple control strategy—flow-commanded current control—using photovoltaic electrodialysis (PV-ED) to enable direct-drive (little to no energy storage), optimally controlled desalination at high production rates. This control scheme was implemented on a fully autonomous, community-scale (2–5 m3 d−1) PV-ED prototype system and operated for 6 months in New Mexico on real brackish groundwater. The prototype fully harnessed 94% of the extracted PV energy despite featuring an energy storage to water productivity ratio of over 99% less than the median PV desalination systems in literature. Flow-commanded current control PV-ED provides a simple strategy to desalinate water for resource-constrained communities and has implications for decarbonizing larger, energy-intensive desalination industries. Desalination of brackish water powered by renewable energy sources is a promising approach to obtain clean water in environmentally constrained communities, but high energy storage requirements hamper its development. Direct-drive photovoltaic electrodialysis is now shown to efficiently produce desalinated water while requiring minimal energy storage.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 10","pages":"1019-1027"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44221-024-00314-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Direct-drive photovoltaic electrodialysis via flow-commanded current control\",\"authors\":\"Jonathan Tae-Yoon Bessette, Shane Richard Pratt, Amos G. Winter V\",\"doi\":\"10.1038/s44221-024-00314-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Renewable powered, brackish groundwater desalination is an underutilized resource in the developing world, where there are unreliable energy sources and reliance on increasingly saline groundwater. Traditional renewable desalination technologies require sizable energy storage for sufficient water production, leading to increased cost, maintenance and complexity. We theorize and demonstrate a simple control strategy—flow-commanded current control—using photovoltaic electrodialysis (PV-ED) to enable direct-drive (little to no energy storage), optimally controlled desalination at high production rates. This control scheme was implemented on a fully autonomous, community-scale (2–5 m3 d−1) PV-ED prototype system and operated for 6 months in New Mexico on real brackish groundwater. The prototype fully harnessed 94% of the extracted PV energy despite featuring an energy storage to water productivity ratio of over 99% less than the median PV desalination systems in literature. Flow-commanded current control PV-ED provides a simple strategy to desalinate water for resource-constrained communities and has implications for decarbonizing larger, energy-intensive desalination industries. Desalination of brackish water powered by renewable energy sources is a promising approach to obtain clean water in environmentally constrained communities, but high energy storage requirements hamper its development. Direct-drive photovoltaic electrodialysis is now shown to efficiently produce desalinated water while requiring minimal energy storage.\",\"PeriodicalId\":74252,\"journal\":{\"name\":\"Nature water\",\"volume\":\"2 10\",\"pages\":\"1019-1027\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44221-024-00314-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44221-024-00314-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature water","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44221-024-00314-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在发展中国家,可再生能源、咸水地下水淡化是一种未得到充分利用的资源,因为那里的能源不可靠,而且依赖于日益含盐的地下水。传统的可再生海水淡化技术需要大量的能量储存才能产生足够的水,从而导致成本、维护和复杂性的增加。我们从理论上提出并演示了一种简单的控制策略--流量指令电流控制--利用光伏电渗析(PV-ED)实现直接驱动(几乎不需要储能),并以高生产率对海水淡化进行优化控制。该控制方案在一个完全自主的社区级(2-5 立方米/天)光伏电渗析原型系统上实施,并在新墨西哥州的真实咸水地下水上运行了 6 个月。该原型系统充分利用了 94% 的光伏提取能量,尽管其储能与水生产力的比率比文献中的中位光伏海水淡化系统低 99%。流量指令电流控制光伏海水淡化系统为资源有限的社区提供了一种简单的海水淡化策略,并对大型能源密集型海水淡化行业的去碳化产生了影响。以可再生能源为动力的苦咸水淡化是在环境受限社区获得清洁水的一种很有前景的方法,但高储能要求阻碍了它的发展。直接驱动光伏电渗析技术现已证明能够高效生产淡化水,同时只需极少的能量储存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct-drive photovoltaic electrodialysis via flow-commanded current control
Renewable powered, brackish groundwater desalination is an underutilized resource in the developing world, where there are unreliable energy sources and reliance on increasingly saline groundwater. Traditional renewable desalination technologies require sizable energy storage for sufficient water production, leading to increased cost, maintenance and complexity. We theorize and demonstrate a simple control strategy—flow-commanded current control—using photovoltaic electrodialysis (PV-ED) to enable direct-drive (little to no energy storage), optimally controlled desalination at high production rates. This control scheme was implemented on a fully autonomous, community-scale (2–5 m3 d−1) PV-ED prototype system and operated for 6 months in New Mexico on real brackish groundwater. The prototype fully harnessed 94% of the extracted PV energy despite featuring an energy storage to water productivity ratio of over 99% less than the median PV desalination systems in literature. Flow-commanded current control PV-ED provides a simple strategy to desalinate water for resource-constrained communities and has implications for decarbonizing larger, energy-intensive desalination industries. Desalination of brackish water powered by renewable energy sources is a promising approach to obtain clean water in environmentally constrained communities, but high energy storage requirements hamper its development. Direct-drive photovoltaic electrodialysis is now shown to efficiently produce desalinated water while requiring minimal energy storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Drinking water and the law Late lessons from early warnings on PFAS Daily sampling reveals household-specific water microbiome signatures and shared antimicrobial resistomes in premise plumbing PFAS concentration and destruction A quadrillion little pieces of plastic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1