{"title":"从瓜果皮提取物中可持续地制备发光氧化锌纳米粒子,作为前瞻性光催化和杀菌剂","authors":"Umamaheswari Murugesan, Vijayakumar Subramaniyan, Prathipkumar Subramaniyan, Vidhya Elavarasan, Sriram Subramanian, Mythili Raja, Sandhanasamy Devanesan","doi":"10.1002/bio.4927","DOIUrl":null,"url":null,"abstract":"<p>The focus of current advances in nanotechnology has shifted significantly towards environmentally conscious methods that use harmless ingredients and moderated reaction circumstances to promote equitable development. Zinc oxide nanoparticles (NPs) currently grabbed attention of multiple medical fields owing to their unique ability to safeguard against cellular damage and alleviate serious human diseases via processes related to metabolism. This work focused on the generation of ZnO NPs using the peel of <i>Cucumis melo</i> fruit. The NPs were then analyzed and characterized using UV–Vis spectroscopy. The results indicated that at a wavelength of 352 nm, it was proven that the biosynthesis of ZnO NPs had occurred. The XRD pattern indicated the presence of dense crystal structures. The field emission scanning electron microscope (FE-SEM) picture confirmed the existence of polygonal-shaped ZnO NPs. The findings indicate that the produced ZnO NPs possess tough antibacterial properties against Gram-positive and Gram-negative microorganisms. When the ZnO NPs were exposed to direct sunshine for 80 min, they showed an 89% dye breakdown efficiency. This research specifically focused on the decomposition of reactivity dyes, with methylene blue dye being used as the target dye. The work demonstrates that the biosynthesis of ZnO NPs has a crucial and versatile role in the biological and environmental sectors.</p>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"39 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable Fabrication of Luminescent Zinc Oxide Nanoparticles From Cucumis melo Fruit Peel Extract as Prospective Photocatalytic and Antigermicidal Agent\",\"authors\":\"Umamaheswari Murugesan, Vijayakumar Subramaniyan, Prathipkumar Subramaniyan, Vidhya Elavarasan, Sriram Subramanian, Mythili Raja, Sandhanasamy Devanesan\",\"doi\":\"10.1002/bio.4927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The focus of current advances in nanotechnology has shifted significantly towards environmentally conscious methods that use harmless ingredients and moderated reaction circumstances to promote equitable development. Zinc oxide nanoparticles (NPs) currently grabbed attention of multiple medical fields owing to their unique ability to safeguard against cellular damage and alleviate serious human diseases via processes related to metabolism. This work focused on the generation of ZnO NPs using the peel of <i>Cucumis melo</i> fruit. The NPs were then analyzed and characterized using UV–Vis spectroscopy. The results indicated that at a wavelength of 352 nm, it was proven that the biosynthesis of ZnO NPs had occurred. The XRD pattern indicated the presence of dense crystal structures. The field emission scanning electron microscope (FE-SEM) picture confirmed the existence of polygonal-shaped ZnO NPs. The findings indicate that the produced ZnO NPs possess tough antibacterial properties against Gram-positive and Gram-negative microorganisms. When the ZnO NPs were exposed to direct sunshine for 80 min, they showed an 89% dye breakdown efficiency. This research specifically focused on the decomposition of reactivity dyes, with methylene blue dye being used as the target dye. The work demonstrates that the biosynthesis of ZnO NPs has a crucial and versatile role in the biological and environmental sectors.</p>\",\"PeriodicalId\":49902,\"journal\":{\"name\":\"Luminescence\",\"volume\":\"39 10\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Luminescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bio.4927\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Luminescence","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bio.4927","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Sustainable Fabrication of Luminescent Zinc Oxide Nanoparticles From Cucumis melo Fruit Peel Extract as Prospective Photocatalytic and Antigermicidal Agent
The focus of current advances in nanotechnology has shifted significantly towards environmentally conscious methods that use harmless ingredients and moderated reaction circumstances to promote equitable development. Zinc oxide nanoparticles (NPs) currently grabbed attention of multiple medical fields owing to their unique ability to safeguard against cellular damage and alleviate serious human diseases via processes related to metabolism. This work focused on the generation of ZnO NPs using the peel of Cucumis melo fruit. The NPs were then analyzed and characterized using UV–Vis spectroscopy. The results indicated that at a wavelength of 352 nm, it was proven that the biosynthesis of ZnO NPs had occurred. The XRD pattern indicated the presence of dense crystal structures. The field emission scanning electron microscope (FE-SEM) picture confirmed the existence of polygonal-shaped ZnO NPs. The findings indicate that the produced ZnO NPs possess tough antibacterial properties against Gram-positive and Gram-negative microorganisms. When the ZnO NPs were exposed to direct sunshine for 80 min, they showed an 89% dye breakdown efficiency. This research specifically focused on the decomposition of reactivity dyes, with methylene blue dye being used as the target dye. The work demonstrates that the biosynthesis of ZnO NPs has a crucial and versatile role in the biological and environmental sectors.
期刊介绍:
Luminescence provides a forum for the publication of original scientific papers, short communications, technical notes and reviews on fundamental and applied aspects of all forms of luminescence, including bioluminescence, chemiluminescence, electrochemiluminescence, sonoluminescence, triboluminescence, fluorescence, time-resolved fluorescence and phosphorescence. Luminescence publishes papers on assays and analytical methods, instrumentation, mechanistic and synthetic studies, basic biology and chemistry.
Luminescence also publishes details of forthcoming meetings, information on new products, and book reviews. A special feature of the Journal is surveys of the recent literature on selected topics in luminescence.