利用 DNA-PAINT 揭示高密度生物功能化表面的空间分子异质性

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-10-21 DOI:10.1021/acsami.4c10310
Wei Shan Tan, Arthur M. de Jong, Menno W. J. Prins
{"title":"利用 DNA-PAINT 揭示高密度生物功能化表面的空间分子异质性","authors":"Wei Shan Tan, Arthur M. de Jong, Menno W. J. Prins","doi":"10.1021/acsami.4c10310","DOIUrl":null,"url":null,"abstract":"The quantification and control of molecular densities and distributions on biofunctionalized surfaces are key for enabling reproducible functions in biosciences. Here, we describe an analysis methodology for quantifying the density and spatial distribution of high-density biofunctionalized surfaces, with densities in the order of 10<sup>2</sup>–10<sup>5</sup> biomolecules per μm<sup>2</sup> area, in a short measurement time. The methodology is based on single-molecule DNA-PAINT imaging combined with simulation models that compensate for lifetime and spatial undersampling effects, resulting in three distinct molecule counting methods and a statistical test for spatial distribution. The analysis methodology is exemplified for a surface with ssDNA affinity binder molecules coupled to a PLL-<i>g</i>-PEG antifouling coating. The results provide insights into the biofunctionalization efficiency, yield, and homogeneity. Furthermore, the data reveal that heterogeneity is inherent to the biofunctionalization process and shed light on the underlying molecular mechanisms. We envision that DNA-PAINT imaging with the developed analysis framework will become a versatile tool to study spatial heterogeneity of densely biofunctionalized surfaces for a wide range of applications.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing Spatial Molecular Heterogeneity of High-Density Biofunctionalized Surfaces Using DNA-PAINT\",\"authors\":\"Wei Shan Tan, Arthur M. de Jong, Menno W. J. Prins\",\"doi\":\"10.1021/acsami.4c10310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quantification and control of molecular densities and distributions on biofunctionalized surfaces are key for enabling reproducible functions in biosciences. Here, we describe an analysis methodology for quantifying the density and spatial distribution of high-density biofunctionalized surfaces, with densities in the order of 10<sup>2</sup>–10<sup>5</sup> biomolecules per μm<sup>2</sup> area, in a short measurement time. The methodology is based on single-molecule DNA-PAINT imaging combined with simulation models that compensate for lifetime and spatial undersampling effects, resulting in three distinct molecule counting methods and a statistical test for spatial distribution. The analysis methodology is exemplified for a surface with ssDNA affinity binder molecules coupled to a PLL-<i>g</i>-PEG antifouling coating. The results provide insights into the biofunctionalization efficiency, yield, and homogeneity. Furthermore, the data reveal that heterogeneity is inherent to the biofunctionalization process and shed light on the underlying molecular mechanisms. We envision that DNA-PAINT imaging with the developed analysis framework will become a versatile tool to study spatial heterogeneity of densely biofunctionalized surfaces for a wide range of applications.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c10310\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c10310","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量化和控制生物功能化表面上的分子密度和分布是实现生物科学可重现功能的关键。在这里,我们介绍了一种在短时间内量化高密度生物功能化表面的密度和空间分布的分析方法,其密度约为每 μm2 面积 102-105 个生物分子。该方法以单分子 DNA-PAINT 成像为基础,结合补偿寿命和空间采样不足效应的模拟模型,产生了三种不同的分子计数方法和空间分布统计测试。该分析方法以表面的 ssDNA 亲和粘合剂分子与 PLL-g-PEG 防污涂层耦合为例进行说明。分析结果有助于深入了解生物功能化的效率、产量和均匀性。此外,数据还揭示了生物功能化过程中固有的异质性,并揭示了潜在的分子机制。我们预计,DNA-PAINT 成像与所开发的分析框架将成为研究高密度生物功能化表面空间异质性的多功能工具,应用范围十分广泛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revealing Spatial Molecular Heterogeneity of High-Density Biofunctionalized Surfaces Using DNA-PAINT
The quantification and control of molecular densities and distributions on biofunctionalized surfaces are key for enabling reproducible functions in biosciences. Here, we describe an analysis methodology for quantifying the density and spatial distribution of high-density biofunctionalized surfaces, with densities in the order of 102–105 biomolecules per μm2 area, in a short measurement time. The methodology is based on single-molecule DNA-PAINT imaging combined with simulation models that compensate for lifetime and spatial undersampling effects, resulting in three distinct molecule counting methods and a statistical test for spatial distribution. The analysis methodology is exemplified for a surface with ssDNA affinity binder molecules coupled to a PLL-g-PEG antifouling coating. The results provide insights into the biofunctionalization efficiency, yield, and homogeneity. Furthermore, the data reveal that heterogeneity is inherent to the biofunctionalization process and shed light on the underlying molecular mechanisms. We envision that DNA-PAINT imaging with the developed analysis framework will become a versatile tool to study spatial heterogeneity of densely biofunctionalized surfaces for a wide range of applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Solid-State Lithium Batteries with In Situ Polymerized Acrylate-Based Electrolytes Capable of Electrochemically Stable Operation at 100 °C From Wet to Protective: Film Formation in Waterborne Coatings Enhanced Weighted Mobility Induced High Thermoelectric Performance in Argyrodite Ag8SnSe6 Symmetry-Engineered BINOL-Based Porous Aromatic Frameworks for H2O2 Production via Artificial Photosynthesis and In Situ Degradation of Pharmaceutical Pollutants MgF2 Interface Engineering Promotes the Growth and Stability of LiF-Rich Solid–Electrolyte Interphases on Si-C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1