基于纳米材料的生物强化:作物的潜在益处和影响

IF 5.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Journal of Agricultural and Food Chemistry Pub Date : 2024-10-21 DOI:10.1021/acs.jafc.4c05079
Erico R. Carmona, Cynthia Rojo, Víctor Vergara Carmona
{"title":"基于纳米材料的生物强化:作物的潜在益处和影响","authors":"Erico R. Carmona, Cynthia Rojo, Víctor Vergara Carmona","doi":"10.1021/acs.jafc.4c05079","DOIUrl":null,"url":null,"abstract":"Nanomaterials (NMs) have shown relevant impacts in crop protection, improvement of yields, and minimizing collateral side effects of fertilizer and pesticides in vegetable and fruit production. The application of NMs to improve biofortification has gained much attention in the last five years, offering a hopeful and optimistic outlook. Thus, we propose comprehensively revising the scientific literature about the use of NMs in the agronomic biofortification of crops and analyzing the beneficial impact of the use of NMs. The results indicated that different species of plants were biofortified with essential elements and macronutrients after the applications of Zn, Fe, Se, nanocomposites, and metalloid NPs. In addition, the physiological performances, antioxidant compounds, and yields were improved with NMs. Using nanofertilizers for the biofortification of crops can be considered a promising method to deliver micronutrients for plants with beneficial impacts on human health, the environment, and agriculture.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanomaterial-Based Biofortification: Potential Benefits and Impacts of Crops\",\"authors\":\"Erico R. Carmona, Cynthia Rojo, Víctor Vergara Carmona\",\"doi\":\"10.1021/acs.jafc.4c05079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanomaterials (NMs) have shown relevant impacts in crop protection, improvement of yields, and minimizing collateral side effects of fertilizer and pesticides in vegetable and fruit production. The application of NMs to improve biofortification has gained much attention in the last five years, offering a hopeful and optimistic outlook. Thus, we propose comprehensively revising the scientific literature about the use of NMs in the agronomic biofortification of crops and analyzing the beneficial impact of the use of NMs. The results indicated that different species of plants were biofortified with essential elements and macronutrients after the applications of Zn, Fe, Se, nanocomposites, and metalloid NPs. In addition, the physiological performances, antioxidant compounds, and yields were improved with NMs. Using nanofertilizers for the biofortification of crops can be considered a promising method to deliver micronutrients for plants with beneficial impacts on human health, the environment, and agriculture.\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.4c05079\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c05079","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米材料(NMs)在作物保护、提高产量、减少化肥和农药对蔬菜和水果生产的附带副作用等方面产生了相关影响。在过去的五年中,应用 NMs 提高生物强化的研究备受关注,前景乐观,令人充满希望。因此,我们建议全面修订有关在作物农艺生物强化中使用非转基因物质的科学文献,并分析使用非转基因物质的有益影响。结果表明,施用锌、铁、硒、纳米复合材料和金属类 NPs 后,不同种类的植物都获得了必需元素和大量营养素的生物强化。此外,纳米金属还改善了植物的生理机能、抗氧化化合物和产量。使用纳米肥料对作物进行生物强化可被视为一种为植物提供微量营养元素的有前途的方法,对人类健康、环境和农业都有有益的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanomaterial-Based Biofortification: Potential Benefits and Impacts of Crops
Nanomaterials (NMs) have shown relevant impacts in crop protection, improvement of yields, and minimizing collateral side effects of fertilizer and pesticides in vegetable and fruit production. The application of NMs to improve biofortification has gained much attention in the last five years, offering a hopeful and optimistic outlook. Thus, we propose comprehensively revising the scientific literature about the use of NMs in the agronomic biofortification of crops and analyzing the beneficial impact of the use of NMs. The results indicated that different species of plants were biofortified with essential elements and macronutrients after the applications of Zn, Fe, Se, nanocomposites, and metalloid NPs. In addition, the physiological performances, antioxidant compounds, and yields were improved with NMs. Using nanofertilizers for the biofortification of crops can be considered a promising method to deliver micronutrients for plants with beneficial impacts on human health, the environment, and agriculture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
期刊最新文献
Engineering Saccharomyces cerevisiae for the Production of Punicic Acid-Rich Yeast Biomass Isomalto-Oligosaccharide Potentiates Alleviating Effects of Intermittent Fasting on Obesity-Related Cognitive Impairment during Weight Loss and the Rebound Weight Gain Nanomaterial-Based Biofortification: Potential Benefits and Impacts of Crops Bioactivity-Oriented Separation of “Pepper Alkaloids” from Piper sintenense Hatusima with Potential Antigouty Arthritis Activity Kiwifruit Polysaccharides Alleviate Ulcerative Colitis via Regulating Gut Microbiota-Dependent Tryptophan Metabolism and Promoting Colon Fucosylation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1