Yi Zhang, Zhimin Zou, Qi Liu, Yu Qiao, Chunhai Jiang
{"title":"碳封闭氧对 Zn 离子电容器电容和循环稳定性增强的双重作用","authors":"Yi Zhang, Zhimin Zou, Qi Liu, Yu Qiao, Chunhai Jiang","doi":"10.1016/j.jmst.2024.10.003","DOIUrl":null,"url":null,"abstract":"Zinc-ion capacitors (ZICs) are promising energy storage devices due to their balance between the energy and power densities inherited from Zn-ion batteries and supercapacitors, respectively. However, the low specific capacitance of carbon cathode materials and the dendrite growth on Zn anode have set fatal drawbacks to their energy density and cycle stability. Herein, we demonstrate that, in 1 M Zn(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>/DMF (N, N-dimethylformamide) electrolyte, confining oxygen in carbon cathode materials via high-energy ball milling can synergistically introduce additional pseudocapacitance on the cathode side while suppressing the dendrite growth on Zn anode side, which jointly lead to high energy density (94 Wh kg<sup>−1</sup> at 448 W kg<sup>−1</sup>) and long cycle stability of ZICs. The hydroxyl group in carbon cathode can be transformed to C—O—Zn together with the release of protons during the initial discharge, which in turn stimulates the defluorination of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">C</mi><msub is=\"true\"><mi mathvariant=\"normal\" is=\"true\">F</mi><mn is=\"true\">3</mn></msub><msubsup is=\"true\"><mtext is=\"true\">SO</mtext><mn is=\"true\">3</mn><mo is=\"true\">&#x2212;</mo></msubsup></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -945.9 3815.4 1295.7\" width=\"8.862ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-43\"></use></g><g is=\"true\" transform=\"translate(722,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-46\"></use></g><g is=\"true\" transform=\"translate(653,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use></g></g><g is=\"true\" transform=\"translate(1829,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-53\"></use><use x=\"556\" xlink:href=\"#MJMAIN-4F\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1335,432)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(1335,-277)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">C</mi><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">F</mi><mn is=\"true\">3</mn></msub><msubsup is=\"true\"><mtext is=\"true\">SO</mtext><mn is=\"true\">3</mn><mo is=\"true\">−</mo></msubsup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">C</mi><msub is=\"true\"><mi mathvariant=\"normal\" is=\"true\">F</mi><mn is=\"true\">3</mn></msub><msubsup is=\"true\"><mtext is=\"true\">SO</mtext><mn is=\"true\">3</mn><mo is=\"true\">−</mo></msubsup></mrow></math></script></span> anions and formation of ZnF<sub>2</sub> on both cathode and anode. The ZnF<sub>2</sub> formed on the surface of the Zn anode suppresses the dendrite growth by regulating the Zn<sup>2+</sup> deposition/stripping in a reticular structure, resulting in the excellent cycle stability. This work provides a facile strategy to rationally design and construct high energy and stable ZICs through engineering the oxygen-bearing functional groups in carbon cathode materials.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"1 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-functions of the carbon-confined oxygen on the capacitance and cycle stability enhancements of Zn-ion capacitors\",\"authors\":\"Yi Zhang, Zhimin Zou, Qi Liu, Yu Qiao, Chunhai Jiang\",\"doi\":\"10.1016/j.jmst.2024.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zinc-ion capacitors (ZICs) are promising energy storage devices due to their balance between the energy and power densities inherited from Zn-ion batteries and supercapacitors, respectively. However, the low specific capacitance of carbon cathode materials and the dendrite growth on Zn anode have set fatal drawbacks to their energy density and cycle stability. Herein, we demonstrate that, in 1 M Zn(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>/DMF (N, N-dimethylformamide) electrolyte, confining oxygen in carbon cathode materials via high-energy ball milling can synergistically introduce additional pseudocapacitance on the cathode side while suppressing the dendrite growth on Zn anode side, which jointly lead to high energy density (94 Wh kg<sup>−1</sup> at 448 W kg<sup>−1</sup>) and long cycle stability of ZICs. The hydroxyl group in carbon cathode can be transformed to C—O—Zn together with the release of protons during the initial discharge, which in turn stimulates the defluorination of <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">C</mi><msub is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">F</mi><mn is=\\\"true\\\">3</mn></msub><msubsup is=\\\"true\\\"><mtext is=\\\"true\\\">SO</mtext><mn is=\\\"true\\\">3</mn><mo is=\\\"true\\\">&#x2212;</mo></msubsup></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.009ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -945.9 3815.4 1295.7\\\" width=\\\"8.862ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-43\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(722,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-46\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(653,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-33\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(1829,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-53\\\"></use><use x=\\\"556\\\" xlink:href=\\\"#MJMAIN-4F\\\" y=\\\"0\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1335,432)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2212\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1335,-277)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-33\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">C</mi><msub is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">F</mi><mn is=\\\"true\\\">3</mn></msub><msubsup is=\\\"true\\\"><mtext is=\\\"true\\\">SO</mtext><mn is=\\\"true\\\">3</mn><mo is=\\\"true\\\">−</mo></msubsup></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">C</mi><msub is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">F</mi><mn is=\\\"true\\\">3</mn></msub><msubsup is=\\\"true\\\"><mtext is=\\\"true\\\">SO</mtext><mn is=\\\"true\\\">3</mn><mo is=\\\"true\\\">−</mo></msubsup></mrow></math></script></span> anions and formation of ZnF<sub>2</sub> on both cathode and anode. The ZnF<sub>2</sub> formed on the surface of the Zn anode suppresses the dendrite growth by regulating the Zn<sup>2+</sup> deposition/stripping in a reticular structure, resulting in the excellent cycle stability. This work provides a facile strategy to rationally design and construct high energy and stable ZICs through engineering the oxygen-bearing functional groups in carbon cathode materials.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.10.003\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.10.003","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
锌离子电容器(ZIC)是一种前景广阔的储能设备,因为它兼顾了锌离子电池和超级电容器的能量密度和功率密度。然而,碳阴极材料的低比电容和锌阳极上的枝晶生长对其能量密度和循环稳定性造成了致命的缺陷。在此,我们证明了在 1 M Zn(CF3SO3)2/DMF(N, N-二甲基甲酰胺)电解液中,通过高能球磨限制碳阴极材料中的氧,可以在阴极侧协同引入额外的假电容,同时抑制锌阳极侧的枝晶生长,从而共同实现 ZIC 的高能量密度(94 Wh kg-1 at 448 W kg-1)和长周期稳定性。在初始放电过程中,碳阴极中的羟基会随着质子的释放转化为 C-O-Zn,进而刺激 CF3SO3-CF3SO3- 阴离子的脱氟反应,并在阴极和阳极上形成 ZnF2。在锌阳极表面形成的 ZnF2 通过调节网状结构中 Zn2+ 的沉积/剥离,抑制了枝晶的生长,从而实现了出色的循环稳定性。这项工作提供了一种简便的策略,通过对碳阴极材料中的含氧官能团进行工程设计,合理地设计和构建高能量和稳定的 ZIC。
Dual-functions of the carbon-confined oxygen on the capacitance and cycle stability enhancements of Zn-ion capacitors
Zinc-ion capacitors (ZICs) are promising energy storage devices due to their balance between the energy and power densities inherited from Zn-ion batteries and supercapacitors, respectively. However, the low specific capacitance of carbon cathode materials and the dendrite growth on Zn anode have set fatal drawbacks to their energy density and cycle stability. Herein, we demonstrate that, in 1 M Zn(CF3SO3)2/DMF (N, N-dimethylformamide) electrolyte, confining oxygen in carbon cathode materials via high-energy ball milling can synergistically introduce additional pseudocapacitance on the cathode side while suppressing the dendrite growth on Zn anode side, which jointly lead to high energy density (94 Wh kg−1 at 448 W kg−1) and long cycle stability of ZICs. The hydroxyl group in carbon cathode can be transformed to C—O—Zn together with the release of protons during the initial discharge, which in turn stimulates the defluorination of anions and formation of ZnF2 on both cathode and anode. The ZnF2 formed on the surface of the Zn anode suppresses the dendrite growth by regulating the Zn2+ deposition/stripping in a reticular structure, resulting in the excellent cycle stability. This work provides a facile strategy to rationally design and construct high energy and stable ZICs through engineering the oxygen-bearing functional groups in carbon cathode materials.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.