Marco Privitera;Alfio Dario Grasso;Andrea Ballo;Massimo Alioto
{"title":"0.6 V、μW 功率四级 OTA,元件最少,负载范围达 100 倍","authors":"Marco Privitera;Alfio Dario Grasso;Andrea Ballo;Massimo Alioto","doi":"10.1109/LSSC.2024.3476194","DOIUrl":null,"url":null,"abstract":"A four-stage operational transconductance amplifier (OTA) for ultralow-power applications is introduced in this letter. The proposed circuit inclusive of frequency compensation requires minimal transistor count and passives, overcoming the traditionally difficult compensation of four-stage OTAs and bringing it back to the simplicity of three-stage OTAs. At the same time, the proposed circuit achieves high power efficiency, as evidenced by the >\n<inline-formula> <tex-math>$3.7\\times $ </tex-math></inline-formula>\n (>\n<inline-formula> <tex-math>$11.3\\times $ </tex-math></inline-formula>\n) improvement in the large-signal (small-signal) power efficiency figure of merit \n<inline-formula> <tex-math>${\\mathrm { FOM}}_{L}~({\\mathrm { FOM}}_{S})$ </tex-math></inline-formula>\n, compared to prior four-stage OTAs (sub-1 V multistage OTAs). Thanks to the lower sensitivity of the phase margin to the load capacitance, the proposed OTA remains stable under a wide range of loads (double-sided as in any three- and four-stage OTA), achieving a max/min ratio of the load capacitance of >\n<inline-formula> <tex-math>$100\\times $ </tex-math></inline-formula>\n.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"311-314"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"0.6-V, μW-Power Four-Stage OTA With Minimal Components, and 100× Load Range\",\"authors\":\"Marco Privitera;Alfio Dario Grasso;Andrea Ballo;Massimo Alioto\",\"doi\":\"10.1109/LSSC.2024.3476194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A four-stage operational transconductance amplifier (OTA) for ultralow-power applications is introduced in this letter. The proposed circuit inclusive of frequency compensation requires minimal transistor count and passives, overcoming the traditionally difficult compensation of four-stage OTAs and bringing it back to the simplicity of three-stage OTAs. At the same time, the proposed circuit achieves high power efficiency, as evidenced by the >\\n<inline-formula> <tex-math>$3.7\\\\times $ </tex-math></inline-formula>\\n (>\\n<inline-formula> <tex-math>$11.3\\\\times $ </tex-math></inline-formula>\\n) improvement in the large-signal (small-signal) power efficiency figure of merit \\n<inline-formula> <tex-math>${\\\\mathrm { FOM}}_{L}~({\\\\mathrm { FOM}}_{S})$ </tex-math></inline-formula>\\n, compared to prior four-stage OTAs (sub-1 V multistage OTAs). Thanks to the lower sensitivity of the phase margin to the load capacitance, the proposed OTA remains stable under a wide range of loads (double-sided as in any three- and four-stage OTA), achieving a max/min ratio of the load capacitance of >\\n<inline-formula> <tex-math>$100\\\\times $ </tex-math></inline-formula>\\n.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"7 \",\"pages\":\"311-314\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10707245/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10707245/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
摘要
本信介绍了一种用于超低功耗应用的四级运算跨导放大器(OTA)。所提出的电路包括频率补偿,只需最少的晶体管数量和无源器件,克服了四级 OTA 传统上难以补偿的问题,使其回归到三级 OTA 的简单性。同时,与之前的四级 OTA(1 V 以下的多级 OTA)相比,所提出的电路实现了较高的功率效率,其大信号(小信号)功率效率优值 ${\mathrm { FOM}}_{L}~({\mathrm { FOM}}_{S})$ 提高了 > 3.7 (> $11.3)倍。由于相位裕度对负载电容的敏感性较低,因此所提出的 OTA 在各种负载(与任何三级和四级 OTA 一样为双面负载)下都能保持稳定,负载电容的最大/最小比> $100\times $。
0.6-V, μW-Power Four-Stage OTA With Minimal Components, and 100× Load Range
A four-stage operational transconductance amplifier (OTA) for ultralow-power applications is introduced in this letter. The proposed circuit inclusive of frequency compensation requires minimal transistor count and passives, overcoming the traditionally difficult compensation of four-stage OTAs and bringing it back to the simplicity of three-stage OTAs. At the same time, the proposed circuit achieves high power efficiency, as evidenced by the >
$3.7\times $
(>
$11.3\times $
) improvement in the large-signal (small-signal) power efficiency figure of merit
${\mathrm { FOM}}_{L}~({\mathrm { FOM}}_{S})$
, compared to prior four-stage OTAs (sub-1 V multistage OTAs). Thanks to the lower sensitivity of the phase margin to the load capacitance, the proposed OTA remains stable under a wide range of loads (double-sided as in any three- and four-stage OTA), achieving a max/min ratio of the load capacitance of >
$100\times $
.