{"title":"使用紧凑型短路耦合器的宽带 GaN MMIC Doherty 功率放大器","authors":"Shun Wan;Wenhua Chen;Guansheng Lv;Yuhang Zhang;Xu Shi;Zhenghe Feng","doi":"10.1109/LSSC.2024.3471855","DOIUrl":null,"url":null,"abstract":"In this letter, a broadband gallium nitride (GaN) monolithic microwave integrated circuit Doherty power amplifier (DPA) using a compact short-circuited coupler (CSC) is presented. To enhance the bandwidth and reduce the size of integrated DPA, the conventional \n<inline-formula> <tex-math>$\\lambda $ </tex-math></inline-formula>\n/2 transmission line in the peaking output matching network is replaced by the CSC structure. Detailed theoretical analysis and design procedures are provided. Based on the proposed solution, a 5.1–7.2-GHz DPA is designed using a 0.12-\n<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>\nm GaN HEMT process. The fractional bandwidth (FBW) is 34.1%. The measurement results show a saturated output power of 37.2–39 dBm and a 6-dB back-off drain efficiency of 38.4%–50.5% across the design bands with a chip size of \n<inline-formula> <tex-math>$2.6\\times 2$ </tex-math></inline-formula>\n.6 mm. The adjacent channel power ratio (ACPR) under 100-MHz single-carrier 64 QAM modulation signal with a 6-dB peak-to-average power ratio (PAPR) excitation is better than −45 dBc with digital predistortion (DPD).","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"307-310"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broadband GaN MMIC Doherty Power Amplifier Using Compact Short-Circuited Coupler\",\"authors\":\"Shun Wan;Wenhua Chen;Guansheng Lv;Yuhang Zhang;Xu Shi;Zhenghe Feng\",\"doi\":\"10.1109/LSSC.2024.3471855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, a broadband gallium nitride (GaN) monolithic microwave integrated circuit Doherty power amplifier (DPA) using a compact short-circuited coupler (CSC) is presented. To enhance the bandwidth and reduce the size of integrated DPA, the conventional \\n<inline-formula> <tex-math>$\\\\lambda $ </tex-math></inline-formula>\\n/2 transmission line in the peaking output matching network is replaced by the CSC structure. Detailed theoretical analysis and design procedures are provided. Based on the proposed solution, a 5.1–7.2-GHz DPA is designed using a 0.12-\\n<inline-formula> <tex-math>$\\\\mu $ </tex-math></inline-formula>\\nm GaN HEMT process. The fractional bandwidth (FBW) is 34.1%. The measurement results show a saturated output power of 37.2–39 dBm and a 6-dB back-off drain efficiency of 38.4%–50.5% across the design bands with a chip size of \\n<inline-formula> <tex-math>$2.6\\\\times 2$ </tex-math></inline-formula>\\n.6 mm. The adjacent channel power ratio (ACPR) under 100-MHz single-carrier 64 QAM modulation signal with a 6-dB peak-to-average power ratio (PAPR) excitation is better than −45 dBc with digital predistortion (DPD).\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"7 \",\"pages\":\"307-310\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10701004/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10701004/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Broadband GaN MMIC Doherty Power Amplifier Using Compact Short-Circuited Coupler
In this letter, a broadband gallium nitride (GaN) monolithic microwave integrated circuit Doherty power amplifier (DPA) using a compact short-circuited coupler (CSC) is presented. To enhance the bandwidth and reduce the size of integrated DPA, the conventional
$\lambda $
/2 transmission line in the peaking output matching network is replaced by the CSC structure. Detailed theoretical analysis and design procedures are provided. Based on the proposed solution, a 5.1–7.2-GHz DPA is designed using a 0.12-
$\mu $
m GaN HEMT process. The fractional bandwidth (FBW) is 34.1%. The measurement results show a saturated output power of 37.2–39 dBm and a 6-dB back-off drain efficiency of 38.4%–50.5% across the design bands with a chip size of
$2.6\times 2$
.6 mm. The adjacent channel power ratio (ACPR) under 100-MHz single-carrier 64 QAM modulation signal with a 6-dB peak-to-average power ratio (PAPR) excitation is better than −45 dBc with digital predistortion (DPD).