用于交通监控的便携式灵活路面传感系统

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-10-02 DOI:10.1109/LSENS.2024.3473306
Naveen Kumar Gajingam;Sourav Karmakar;Aftab M. Hussain
{"title":"用于交通监控的便携式灵活路面传感系统","authors":"Naveen Kumar Gajingam;Sourav Karmakar;Aftab M. Hussain","doi":"10.1109/LSENS.2024.3473306","DOIUrl":null,"url":null,"abstract":"With an increasing number of vehicles on the road every day, intelligent traffic monitoring and control is essential. This entails development of cost-effective, scalable, and easy-to-install monitoring systems. In this letter, a versatile piezoresistance-based cost-effective on-road sensor system is presented to estimate vehicle speed and vehicle wheelbase length. The system consists of a velostat thin film sensing element placed on the road, with read out circuits and control electronics located at the sidewalk. The system measures the speed of a vehicle with 90.4% accuracy, and the length of the wheelbase with 94.3% accuracy. The wheelbase length can be used to classify the vehicle type. Our experiments show that the system is reliable, as the sensor output returns to the initial values after each vehicle passes. The utilization of flexible piezoresistive sensors makes this system convenient to deploy in different applications where basic traffic activity monitoring is required with speed, count, and classification estimation of vehicles.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Portable and Flexible On-Road Sensing System for Traffic Monitoring\",\"authors\":\"Naveen Kumar Gajingam;Sourav Karmakar;Aftab M. Hussain\",\"doi\":\"10.1109/LSENS.2024.3473306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With an increasing number of vehicles on the road every day, intelligent traffic monitoring and control is essential. This entails development of cost-effective, scalable, and easy-to-install monitoring systems. In this letter, a versatile piezoresistance-based cost-effective on-road sensor system is presented to estimate vehicle speed and vehicle wheelbase length. The system consists of a velostat thin film sensing element placed on the road, with read out circuits and control electronics located at the sidewalk. The system measures the speed of a vehicle with 90.4% accuracy, and the length of the wheelbase with 94.3% accuracy. The wheelbase length can be used to classify the vehicle type. Our experiments show that the system is reliable, as the sensor output returns to the initial values after each vehicle passes. The utilization of flexible piezoresistive sensors makes this system convenient to deploy in different applications where basic traffic activity monitoring is required with speed, count, and classification estimation of vehicles.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10704048/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10704048/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着道路上的车辆数量与日俱增,智能交通监控变得至关重要。这就需要开发具有成本效益、可扩展且易于安装的监控系统。在这封信中,我们介绍了一种基于压阻的多功能、经济高效的路面传感器系统,用于估算车辆速度和车辆轴距长度。该系统由放置在路面上的 velostat 薄膜传感元件和位于人行道上的读出电路和控制电子元件组成。该系统测量车速的准确率为 90.4%,测量轴距长度的准确率为 94.3%。轴距长度可用来对车辆类型进行分类。我们的实验表明,该系统是可靠的,因为每次车辆通过后,传感器输出都会返回初始值。由于使用了柔性压阻传感器,该系统可以方便地部署在需要对车辆的速度、数量和分类进行估计的基本交通活动监控的不同应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Portable and Flexible On-Road Sensing System for Traffic Monitoring
With an increasing number of vehicles on the road every day, intelligent traffic monitoring and control is essential. This entails development of cost-effective, scalable, and easy-to-install monitoring systems. In this letter, a versatile piezoresistance-based cost-effective on-road sensor system is presented to estimate vehicle speed and vehicle wheelbase length. The system consists of a velostat thin film sensing element placed on the road, with read out circuits and control electronics located at the sidewalk. The system measures the speed of a vehicle with 90.4% accuracy, and the length of the wheelbase with 94.3% accuracy. The wheelbase length can be used to classify the vehicle type. Our experiments show that the system is reliable, as the sensor output returns to the initial values after each vehicle passes. The utilization of flexible piezoresistive sensors makes this system convenient to deploy in different applications where basic traffic activity monitoring is required with speed, count, and classification estimation of vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
An Efficient and Scalable Internet of Things Framework for Smart Farming Machine Learning-Based Low-Cost Colorimetric Sensor for pH and Free-Chlorine Measurement A Portable and Flexible On-Road Sensing System for Traffic Monitoring Advancing General Sensor Data Synthesis by Integrating LLMs and Domain-Specific Generative Models $\mu$WSense: A Self-Sustainable Microwave-Powered Battery-Less Wireless Sensor Node for Temperature and Humidity Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1