Hanyu Yang, Kaijing Yang, Rong Tang, Hui Chen, Wei Liu, Xiupei Yang
{"title":"用于荧光和目视检测六价铬的 S、N-掺杂 Ce/Cu 双金属纳米粒子的自组装","authors":"Hanyu Yang, Kaijing Yang, Rong Tang, Hui Chen, Wei Liu, Xiupei Yang","doi":"10.1007/s00604-024-06715-4","DOIUrl":null,"url":null,"abstract":"<div><p>Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> was doped into 4,6-diamino-2-mercaptopyrimidine (DAMP)-encapsulated copper nanoclusters (CuNCs) via a facile, rapid, low-temperature, and green self-assembly synthesis method to obtain fluorescent S,N-codoped Cu/Ce-DAMP nanoparticles (S,N-codoped Cu/CeNPs) for the detection of Cr(VI). The prepared Cu/CeNPs exhibit double emission peaks at 470 nm and 610 nm. The fluorescence emission at 610 nm is significantly enhanced due to the aggregation-induced emission (AIE) effect, and the quantum yield is as high as 20.19%. The fluorescence emission at 610 nm can be selectively quenched by Cr(VI) due to the internal filter effect (IFE) and dynamic quenching, whereas the weak fluorescence at 470 nm remains almost stable. On this basis, a fluorescence assay method for Cr(VI) was established, with good linearity in the concentration range 0.5–120 µM and a detection limit (LOD) of 134 nM. Using a smartphone to take photos of the fluorescence signals changes caused by Cr(VI) rapid visual detection is achieved with a linear range of 10–130 μM and a LOD of 2.35 μM. The proposed method was successfully applied to the detection of Cr(VI) in actual water samples.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"191 11","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-assembly of S,N-codoped Ce/Cu bimetallic nanoparticles for fluorescence and visual detection of hexavalent chromium\",\"authors\":\"Hanyu Yang, Kaijing Yang, Rong Tang, Hui Chen, Wei Liu, Xiupei Yang\",\"doi\":\"10.1007/s00604-024-06715-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> was doped into 4,6-diamino-2-mercaptopyrimidine (DAMP)-encapsulated copper nanoclusters (CuNCs) via a facile, rapid, low-temperature, and green self-assembly synthesis method to obtain fluorescent S,N-codoped Cu/Ce-DAMP nanoparticles (S,N-codoped Cu/CeNPs) for the detection of Cr(VI). The prepared Cu/CeNPs exhibit double emission peaks at 470 nm and 610 nm. The fluorescence emission at 610 nm is significantly enhanced due to the aggregation-induced emission (AIE) effect, and the quantum yield is as high as 20.19%. The fluorescence emission at 610 nm can be selectively quenched by Cr(VI) due to the internal filter effect (IFE) and dynamic quenching, whereas the weak fluorescence at 470 nm remains almost stable. On this basis, a fluorescence assay method for Cr(VI) was established, with good linearity in the concentration range 0.5–120 µM and a detection limit (LOD) of 134 nM. Using a smartphone to take photos of the fluorescence signals changes caused by Cr(VI) rapid visual detection is achieved with a linear range of 10–130 μM and a LOD of 2.35 μM. The proposed method was successfully applied to the detection of Cr(VI) in actual water samples.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"191 11\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-024-06715-4\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06715-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Self-assembly of S,N-codoped Ce/Cu bimetallic nanoparticles for fluorescence and visual detection of hexavalent chromium
Ce2(SO4)3 was doped into 4,6-diamino-2-mercaptopyrimidine (DAMP)-encapsulated copper nanoclusters (CuNCs) via a facile, rapid, low-temperature, and green self-assembly synthesis method to obtain fluorescent S,N-codoped Cu/Ce-DAMP nanoparticles (S,N-codoped Cu/CeNPs) for the detection of Cr(VI). The prepared Cu/CeNPs exhibit double emission peaks at 470 nm and 610 nm. The fluorescence emission at 610 nm is significantly enhanced due to the aggregation-induced emission (AIE) effect, and the quantum yield is as high as 20.19%. The fluorescence emission at 610 nm can be selectively quenched by Cr(VI) due to the internal filter effect (IFE) and dynamic quenching, whereas the weak fluorescence at 470 nm remains almost stable. On this basis, a fluorescence assay method for Cr(VI) was established, with good linearity in the concentration range 0.5–120 µM and a detection limit (LOD) of 134 nM. Using a smartphone to take photos of the fluorescence signals changes caused by Cr(VI) rapid visual detection is achieved with a linear range of 10–130 μM and a LOD of 2.35 μM. The proposed method was successfully applied to the detection of Cr(VI) in actual water samples.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.