用于电能质量干扰检测和识别的先进量子支持向量机

IF 5.8 2区 物理与天体物理 Q1 OPTICS EPJ Quantum Technology Pub Date : 2024-10-22 DOI:10.1140/epjqt/s40507-024-00283-5
Qing-Le Wang, Yu Jin, Xin-Hao Li, Yue Li, Yuan-Cheng Li, Ke-Jia Zhang, Hao Liu, Long Cheng
{"title":"用于电能质量干扰检测和识别的先进量子支持向量机","authors":"Qing-Le Wang,&nbsp;Yu Jin,&nbsp;Xin-Hao Li,&nbsp;Yue Li,&nbsp;Yuan-Cheng Li,&nbsp;Ke-Jia Zhang,&nbsp;Hao Liu,&nbsp;Long Cheng","doi":"10.1140/epjqt/s40507-024-00283-5","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum algorithms have demonstrated extraordinary potential across numerous fields, offering significant advantages in solving practical problems. Power Quality Disturbances (PQDs) have always been a critical factor affecting the stability and safety of electrical power systems, and accurately detecting and identifying PQDs is crucial for ensuring reliable system operation. This paper explores the application of quantum algorithms in the field of power quality and proposes a novel method using Quantum Support Vector Machines (QSVM) to detect and identify PQDs, which marks the first application of QSVM in PQD analysis. The QSVM model employed involves three main stages: quantum feature mapping, quantum kernel computation, and model training. Quantum feature mapping uses quantum circuits to map classical data into a high-dimensional Hilbert space, enhancing feature separability. Quantum kernel computation calculates the inner products between features for model training. Rigorous theoretical and experimental analyses validate our approach. This method achieves a time complexity of <span>\\(O(N^{2} \\log (N))\\)</span>, superior to classical SVM algorithms. Simulation results show high accuracy in PQDs detection, achieving a 100% detection rate and a 96.25% accuracy rate in single PQD identification. Experimental outcomes demonstrate robustness, maintaining over 87% accuracy even with increased noise levels, confirming its effectiveness in PQDs detection and identification.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00283-5","citationCount":"0","resultStr":"{\"title\":\"An advanced quantum support vector machine for power quality disturbance detection and identification\",\"authors\":\"Qing-Le Wang,&nbsp;Yu Jin,&nbsp;Xin-Hao Li,&nbsp;Yue Li,&nbsp;Yuan-Cheng Li,&nbsp;Ke-Jia Zhang,&nbsp;Hao Liu,&nbsp;Long Cheng\",\"doi\":\"10.1140/epjqt/s40507-024-00283-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantum algorithms have demonstrated extraordinary potential across numerous fields, offering significant advantages in solving practical problems. Power Quality Disturbances (PQDs) have always been a critical factor affecting the stability and safety of electrical power systems, and accurately detecting and identifying PQDs is crucial for ensuring reliable system operation. This paper explores the application of quantum algorithms in the field of power quality and proposes a novel method using Quantum Support Vector Machines (QSVM) to detect and identify PQDs, which marks the first application of QSVM in PQD analysis. The QSVM model employed involves three main stages: quantum feature mapping, quantum kernel computation, and model training. Quantum feature mapping uses quantum circuits to map classical data into a high-dimensional Hilbert space, enhancing feature separability. Quantum kernel computation calculates the inner products between features for model training. Rigorous theoretical and experimental analyses validate our approach. This method achieves a time complexity of <span>\\\\(O(N^{2} \\\\log (N))\\\\)</span>, superior to classical SVM algorithms. Simulation results show high accuracy in PQDs detection, achieving a 100% detection rate and a 96.25% accuracy rate in single PQD identification. Experimental outcomes demonstrate robustness, maintaining over 87% accuracy even with increased noise levels, confirming its effectiveness in PQDs detection and identification.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00283-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-024-00283-5\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00283-5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

量子算法已在众多领域展现出非凡的潜力,在解决实际问题方面具有显著优势。电能质量干扰(PQD)一直是影响电力系统稳定性和安全性的关键因素,准确检测和识别 PQD 对于确保系统可靠运行至关重要。本文探讨了量子算法在电能质量领域的应用,并提出了一种利用量子支持向量机(QSVM)检测和识别 PQD 的新方法,这标志着 QSVM 在 PQD 分析中的首次应用。所采用的 QSVM 模型包括三个主要阶段:量子特征映射、量子核计算和模型训练。量子特征映射利用量子电路将经典数据映射到高维希尔伯特空间,从而提高特征的可分离性。量子核计算计算特征之间的内积,用于模型训练。严格的理论和实验分析验证了我们的方法。该方法的时间复杂度为(O(N^{2}\log (N)\log(N)),优于经典的 SVM 算法。仿真结果表明,PQD 的检测准确率很高,检测率达到 100%,单个 PQD 识别的准确率达到 96.25%。实验结果证明了该算法的鲁棒性,即使在噪声水平增加的情况下也能保持 87% 以上的准确率,从而证实了它在 PQDs 检测和识别方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An advanced quantum support vector machine for power quality disturbance detection and identification

Quantum algorithms have demonstrated extraordinary potential across numerous fields, offering significant advantages in solving practical problems. Power Quality Disturbances (PQDs) have always been a critical factor affecting the stability and safety of electrical power systems, and accurately detecting and identifying PQDs is crucial for ensuring reliable system operation. This paper explores the application of quantum algorithms in the field of power quality and proposes a novel method using Quantum Support Vector Machines (QSVM) to detect and identify PQDs, which marks the first application of QSVM in PQD analysis. The QSVM model employed involves three main stages: quantum feature mapping, quantum kernel computation, and model training. Quantum feature mapping uses quantum circuits to map classical data into a high-dimensional Hilbert space, enhancing feature separability. Quantum kernel computation calculates the inner products between features for model training. Rigorous theoretical and experimental analyses validate our approach. This method achieves a time complexity of \(O(N^{2} \log (N))\), superior to classical SVM algorithms. Simulation results show high accuracy in PQDs detection, achieving a 100% detection rate and a 96.25% accuracy rate in single PQD identification. Experimental outcomes demonstrate robustness, maintaining over 87% accuracy even with increased noise levels, confirming its effectiveness in PQDs detection and identification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
期刊最新文献
Integration of germanium-vacancy single photon emitters arrays in diamond nanopillars Pulse shape optimization against Doppler shifts and delays in optical quantum communication QCCP: a taskflow programming model for emerging computing scenario Investigating the use of multiple representations in university courses on quantum technologies Tight upper bound of the maximal quantum violation of Gisin’s elegant Bell inequality and its application in randomness certification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1