Hamid Hachemi, Jean Armengaud, Lucia Grenga, Olivier Pible
{"title":"LineageFilter:利用元蛋白质组学和机器学习改进复杂样本的蛋白质分型。","authors":"Hamid Hachemi, Jean Armengaud, Lucia Grenga, Olivier Pible","doi":"10.1021/acs.jproteome.4c00184","DOIUrl":null,"url":null,"abstract":"<p><p>Metaproteomics is a powerful tool to characterize how microbiota function by analyzing their proteic content by tandem mass spectrometry. Given the complexity of these samples, accurately assessing their taxonomical composition without prior information based solely on peptide sequences remains a challenge. Here, we present LineageFilter, a new python-based AI software for refined proteotyping of complex samples using metaproteomics interpreted data and machine learning. Given a tentative list of taxa, their abundances, and the scores associated with their identified peptides, LineageFilter computes a comprehensive set of features for each identified taxon at all taxonomical ranks. Its machine-learning model then assesses the likelihood of each taxon's presence based on these features, enabling improved proteotyping and sample-specific database construction.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"5203-5208"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LineageFilter: Improved Proteotyping of Complex Samples Using Metaproteomics and Machine Learning.\",\"authors\":\"Hamid Hachemi, Jean Armengaud, Lucia Grenga, Olivier Pible\",\"doi\":\"10.1021/acs.jproteome.4c00184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metaproteomics is a powerful tool to characterize how microbiota function by analyzing their proteic content by tandem mass spectrometry. Given the complexity of these samples, accurately assessing their taxonomical composition without prior information based solely on peptide sequences remains a challenge. Here, we present LineageFilter, a new python-based AI software for refined proteotyping of complex samples using metaproteomics interpreted data and machine learning. Given a tentative list of taxa, their abundances, and the scores associated with their identified peptides, LineageFilter computes a comprehensive set of features for each identified taxon at all taxonomical ranks. Its machine-learning model then assesses the likelihood of each taxon's presence based on these features, enabling improved proteotyping and sample-specific database construction.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\" \",\"pages\":\"5203-5208\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.4c00184\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00184","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
LineageFilter: Improved Proteotyping of Complex Samples Using Metaproteomics and Machine Learning.
Metaproteomics is a powerful tool to characterize how microbiota function by analyzing their proteic content by tandem mass spectrometry. Given the complexity of these samples, accurately assessing their taxonomical composition without prior information based solely on peptide sequences remains a challenge. Here, we present LineageFilter, a new python-based AI software for refined proteotyping of complex samples using metaproteomics interpreted data and machine learning. Given a tentative list of taxa, their abundances, and the scores associated with their identified peptides, LineageFilter computes a comprehensive set of features for each identified taxon at all taxonomical ranks. Its machine-learning model then assesses the likelihood of each taxon's presence based on these features, enabling improved proteotyping and sample-specific database construction.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".