Teresa Cernadas, João Pereira, Bruna L Melo, Duarte de Melo-Diogo, Ilídio J Correia, Patrícia Alves, Paula Ferreira
{"title":"可再生光交联聚酯基生物材料:合成、表征和细胞相容性评估。","authors":"Teresa Cernadas, João Pereira, Bruna L Melo, Duarte de Melo-Diogo, Ilídio J Correia, Patrícia Alves, Paula Ferreira","doi":"10.1021/acs.biomac.4c00599","DOIUrl":null,"url":null,"abstract":"<p><p>The present work consist of the synthesis of photo-cross-linkable materials, based on unsaturated polyesters (UPs), synthesized from biobased monomers from renewable sources such as itaconic acid and 1,4-butanediol. The UPs were characterized to assess the influence of polycondensation reaction temperature and cross-linking time on their final properties. For this purpose, different UV irradiation exposure periods were tested. Homogeneous, uniform, and transparent films were obtained after 1, 3, and 5 min of UV exposure. These cross-linked films were then characterized. All materials presented high gel content, which was dependent on the reaction's temperature. The thermal behaviors of the UPs were shown to be similar. In vitro hydrolytic degradation tests showed that the materials can undergo degradation in phosphate-buffered saline (PBS) at pH 7.4 and 37 °C, ensuring their biodegradability over time. Finally, to assess the applicability of the polyesters as biomaterials, their cytocompatibility was determined by using human dermal fibroblasts.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"7134-7145"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Renewable Photo-Cross-Linkable Polyester-Based Biomaterials: Synthesis, Characterization, and Cytocompatibility Assessment.\",\"authors\":\"Teresa Cernadas, João Pereira, Bruna L Melo, Duarte de Melo-Diogo, Ilídio J Correia, Patrícia Alves, Paula Ferreira\",\"doi\":\"10.1021/acs.biomac.4c00599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present work consist of the synthesis of photo-cross-linkable materials, based on unsaturated polyesters (UPs), synthesized from biobased monomers from renewable sources such as itaconic acid and 1,4-butanediol. The UPs were characterized to assess the influence of polycondensation reaction temperature and cross-linking time on their final properties. For this purpose, different UV irradiation exposure periods were tested. Homogeneous, uniform, and transparent films were obtained after 1, 3, and 5 min of UV exposure. These cross-linked films were then characterized. All materials presented high gel content, which was dependent on the reaction's temperature. The thermal behaviors of the UPs were shown to be similar. In vitro hydrolytic degradation tests showed that the materials can undergo degradation in phosphate-buffered saline (PBS) at pH 7.4 and 37 °C, ensuring their biodegradability over time. Finally, to assess the applicability of the polyesters as biomaterials, their cytocompatibility was determined by using human dermal fibroblasts.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"7134-7145\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c00599\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00599","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Renewable Photo-Cross-Linkable Polyester-Based Biomaterials: Synthesis, Characterization, and Cytocompatibility Assessment.
The present work consist of the synthesis of photo-cross-linkable materials, based on unsaturated polyesters (UPs), synthesized from biobased monomers from renewable sources such as itaconic acid and 1,4-butanediol. The UPs were characterized to assess the influence of polycondensation reaction temperature and cross-linking time on their final properties. For this purpose, different UV irradiation exposure periods were tested. Homogeneous, uniform, and transparent films were obtained after 1, 3, and 5 min of UV exposure. These cross-linked films were then characterized. All materials presented high gel content, which was dependent on the reaction's temperature. The thermal behaviors of the UPs were shown to be similar. In vitro hydrolytic degradation tests showed that the materials can undergo degradation in phosphate-buffered saline (PBS) at pH 7.4 and 37 °C, ensuring their biodegradability over time. Finally, to assess the applicability of the polyesters as biomaterials, their cytocompatibility was determined by using human dermal fibroblasts.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.