超导 TiN 薄膜具有很强的抗环境侵蚀能力。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Horizons Pub Date : 2024-10-15 DOI:10.1039/d4mh00959b
Zhangyuan Guo, Min Ge, You-Qi Zhou, Jiachang Bi, Qinghua Zhang, Jiahui Zhang, Jin-Tao Ye, Rongjing Zhai, Fangfang Ge, Yuan Huang, Ruyi Zhang, Xiong Yao, Liang-Feng Huang, Yanwei Cao
{"title":"超导 TiN 薄膜具有很强的抗环境侵蚀能力。","authors":"Zhangyuan Guo, Min Ge, You-Qi Zhou, Jiachang Bi, Qinghua Zhang, Jiahui Zhang, Jin-Tao Ye, Rongjing Zhai, Fangfang Ge, Yuan Huang, Ruyi Zhang, Xiong Yao, Liang-Feng Huang, Yanwei Cao","doi":"10.1039/d4mh00959b","DOIUrl":null,"url":null,"abstract":"<p><p>Superconductors, an essential class of functional materials, hold a vital position in both fundamental science and practical applications. However, most superconductors, including MgB<sub>2</sub>, Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+<i>δ</i></sub>, and FeSe, are highly sensitive to environmental attacks (such as from water and moist air), hindering their wide applications. More importantly, the surface physical and chemical processes of most superconductors in various environments remain poorly understood. Here, we comprehensively investigate the high resistance of superconducting titanium nitride (TiN) epitaxial films against acid and alkali attacks. Unexpectedly, despite immersion in acid and alkaline solutions for over 7 days, the crystal structure and superconducting properties of TiN films remain stable, as demonstrated by high-resolution X-ray diffraction, electrical transport, atomic force microscopy, and scanning electron microscopy. Furthermore, combining scanning transmission electron microscopy analysis with density functional theory calculations revealed the corrosion mechanisms: acid corrosions lead to the creation of numerous defects due to the substitution of Cl ions for N anions, whereas alkaline environments significantly reduce the film thickness through the stabilization of OH* adsorbates. Our results uncover the unexpected stability and durability of superconducting materials against environmental attacks, highlighting their potential for enhanced reliability and longevity in diverse applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High resistance of superconducting TiN thin films against environmental attacks.\",\"authors\":\"Zhangyuan Guo, Min Ge, You-Qi Zhou, Jiachang Bi, Qinghua Zhang, Jiahui Zhang, Jin-Tao Ye, Rongjing Zhai, Fangfang Ge, Yuan Huang, Ruyi Zhang, Xiong Yao, Liang-Feng Huang, Yanwei Cao\",\"doi\":\"10.1039/d4mh00959b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Superconductors, an essential class of functional materials, hold a vital position in both fundamental science and practical applications. However, most superconductors, including MgB<sub>2</sub>, Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+<i>δ</i></sub>, and FeSe, are highly sensitive to environmental attacks (such as from water and moist air), hindering their wide applications. More importantly, the surface physical and chemical processes of most superconductors in various environments remain poorly understood. Here, we comprehensively investigate the high resistance of superconducting titanium nitride (TiN) epitaxial films against acid and alkali attacks. Unexpectedly, despite immersion in acid and alkaline solutions for over 7 days, the crystal structure and superconducting properties of TiN films remain stable, as demonstrated by high-resolution X-ray diffraction, electrical transport, atomic force microscopy, and scanning electron microscopy. Furthermore, combining scanning transmission electron microscopy analysis with density functional theory calculations revealed the corrosion mechanisms: acid corrosions lead to the creation of numerous defects due to the substitution of Cl ions for N anions, whereas alkaline environments significantly reduce the film thickness through the stabilization of OH* adsorbates. Our results uncover the unexpected stability and durability of superconducting materials against environmental attacks, highlighting their potential for enhanced reliability and longevity in diverse applications.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh00959b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh00959b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超导体是一类重要的功能材料,在基础科学和实际应用中都占有重要地位。然而,包括 MgB2、Bi2Sr2CaCu2O8+δ 和 FeSe 在内的大多数超导体对环境侵蚀(如水和潮湿空气)高度敏感,这阻碍了它们的广泛应用。更重要的是,人们对大多数超导体在各种环境中的表面物理和化学过程仍然知之甚少。在这里,我们全面研究了超导氮化钛(TiN)外延薄膜对酸碱侵蚀的高耐受性。通过高分辨率 X 射线衍射、电传输、原子力显微镜和扫描电子显微镜,我们意外地发现,尽管在酸碱溶液中浸泡超过 7 天,氮化钛薄膜的晶体结构和超导特性仍然保持稳定。此外,将扫描透射电子显微镜分析与密度泛函理论计算相结合,还揭示了腐蚀机制:酸性腐蚀会导致 Cl 离子取代 N 阴离子而产生大量缺陷,而碱性环境则会通过稳定 OH* 吸附物而显著降低薄膜厚度。我们的研究结果揭示了超导材料在面对环境侵蚀时出人意料的稳定性和耐用性,凸显了它们在各种应用中提高可靠性和延长使用寿命的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High resistance of superconducting TiN thin films against environmental attacks.

Superconductors, an essential class of functional materials, hold a vital position in both fundamental science and practical applications. However, most superconductors, including MgB2, Bi2Sr2CaCu2O8+δ, and FeSe, are highly sensitive to environmental attacks (such as from water and moist air), hindering their wide applications. More importantly, the surface physical and chemical processes of most superconductors in various environments remain poorly understood. Here, we comprehensively investigate the high resistance of superconducting titanium nitride (TiN) epitaxial films against acid and alkali attacks. Unexpectedly, despite immersion in acid and alkaline solutions for over 7 days, the crystal structure and superconducting properties of TiN films remain stable, as demonstrated by high-resolution X-ray diffraction, electrical transport, atomic force microscopy, and scanning electron microscopy. Furthermore, combining scanning transmission electron microscopy analysis with density functional theory calculations revealed the corrosion mechanisms: acid corrosions lead to the creation of numerous defects due to the substitution of Cl ions for N anions, whereas alkaline environments significantly reduce the film thickness through the stabilization of OH* adsorbates. Our results uncover the unexpected stability and durability of superconducting materials against environmental attacks, highlighting their potential for enhanced reliability and longevity in diverse applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
期刊最新文献
Outstanding high-temperature capacitive performance in all-organic dielectrics enabled by synergistic optimization of molecular traps and aggregation structures. Piezo-to-piezo (P2P) conversion: simultaneous β-phase crystallization and poling of ultrathin, transparent and freestanding homopolymer PVDF films via MHz-order nanoelectromechanical vibration. Using a stable radical as an "electron donor" to develop a radical photosensitizer for efficient type-I photodynamic therapy. Biological metasurfaces based on tailored Luria Bertani Agar growth medium formulations for photonic applications. Hydrogen sulfide-generating semiconducting polymer nanoparticles for amplified radiodynamic-ferroptosis therapy of orthotopic glioblastoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1