Ashuang Liu, Zhimao Huang, Shengyong Cui, Ying Xiao, Xiangshu Guo, Gaoke Pan, Lei Song, Junjie Deng, Ting Xu, Youfen Fan and Rong Wang
{"title":"离子装配止血粉末,具有快速自凝胶、强耐酸性和按需清除性,可用于上消化道出血。","authors":"Ashuang Liu, Zhimao Huang, Shengyong Cui, Ying Xiao, Xiangshu Guo, Gaoke Pan, Lei Song, Junjie Deng, Ting Xu, Youfen Fan and Rong Wang","doi":"10.1039/D4MH00837E","DOIUrl":null,"url":null,"abstract":"<p >Upper gastrointestinal bleeding (UGIB) is bleeding in the upper part of the gastrointestinal tract with an acidic and dynamic environment that limits the application of conventional hemostatic materials. This study focuses on the development of <em>N</em>-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride/phytic acid (HTCC/PA, HP) powders with fast hemostatic capability and strong acid resistance, for potential applications in managing UGIB. Upon contact with liquids within 5 seconds, HP powders rapidly transform into hydrogels, forming ionic networks through electrostatic interactions. The ionic crosslinking process facilitates the HP powders with high blood absorption (3.4 times of self-weight), sufficient tissue adhesion (5.2 and 6.1 kPa on porcine skin and stomach, respectively), and hemostasis (within 15 seconds for <em>in vitro</em> clotting). Interestingly, the PA imparts the HP powders with strong acid resistance (69.8% mass remaining after 10 days of incubation at pH 1) and on-demand removable sealing while HTCC contributes to fast hemostasis and good wet adhesion. Moreover, the HP powders show good biocompatibility and promote wound healing. Therefore, these characteristics highlight the promising clinical potential of HP powders for effectively managing UGIB.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 23","pages":" 5983-5996"},"PeriodicalIF":12.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ionically assembled hemostatic powders with rapid self-gelation, strong acid resistance, and on-demand removability for upper gastrointestinal bleeding†\",\"authors\":\"Ashuang Liu, Zhimao Huang, Shengyong Cui, Ying Xiao, Xiangshu Guo, Gaoke Pan, Lei Song, Junjie Deng, Ting Xu, Youfen Fan and Rong Wang\",\"doi\":\"10.1039/D4MH00837E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Upper gastrointestinal bleeding (UGIB) is bleeding in the upper part of the gastrointestinal tract with an acidic and dynamic environment that limits the application of conventional hemostatic materials. This study focuses on the development of <em>N</em>-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride/phytic acid (HTCC/PA, HP) powders with fast hemostatic capability and strong acid resistance, for potential applications in managing UGIB. Upon contact with liquids within 5 seconds, HP powders rapidly transform into hydrogels, forming ionic networks through electrostatic interactions. The ionic crosslinking process facilitates the HP powders with high blood absorption (3.4 times of self-weight), sufficient tissue adhesion (5.2 and 6.1 kPa on porcine skin and stomach, respectively), and hemostasis (within 15 seconds for <em>in vitro</em> clotting). Interestingly, the PA imparts the HP powders with strong acid resistance (69.8% mass remaining after 10 days of incubation at pH 1) and on-demand removable sealing while HTCC contributes to fast hemostasis and good wet adhesion. Moreover, the HP powders show good biocompatibility and promote wound healing. Therefore, these characteristics highlight the promising clinical potential of HP powders for effectively managing UGIB.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" 23\",\"pages\":\" 5983-5996\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/mh/d4mh00837e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mh/d4mh00837e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ionically assembled hemostatic powders with rapid self-gelation, strong acid resistance, and on-demand removability for upper gastrointestinal bleeding†
Upper gastrointestinal bleeding (UGIB) is bleeding in the upper part of the gastrointestinal tract with an acidic and dynamic environment that limits the application of conventional hemostatic materials. This study focuses on the development of N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride/phytic acid (HTCC/PA, HP) powders with fast hemostatic capability and strong acid resistance, for potential applications in managing UGIB. Upon contact with liquids within 5 seconds, HP powders rapidly transform into hydrogels, forming ionic networks through electrostatic interactions. The ionic crosslinking process facilitates the HP powders with high blood absorption (3.4 times of self-weight), sufficient tissue adhesion (5.2 and 6.1 kPa on porcine skin and stomach, respectively), and hemostasis (within 15 seconds for in vitro clotting). Interestingly, the PA imparts the HP powders with strong acid resistance (69.8% mass remaining after 10 days of incubation at pH 1) and on-demand removable sealing while HTCC contributes to fast hemostasis and good wet adhesion. Moreover, the HP powders show good biocompatibility and promote wound healing. Therefore, these characteristics highlight the promising clinical potential of HP powders for effectively managing UGIB.