诱导生长的 g-C3N4@lithium sodium niobate 用于超级电容器和压电调谐电化学势控制的智能电磁屏蔽管理。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Horizons Pub Date : 2024-10-21 DOI:10.1039/d4mh01127a
Prem Pal Singh, Bhanu Bhusan Khatua
{"title":"诱导生长的 g-C3N4@lithium sodium niobate 用于超级电容器和压电调谐电化学势控制的智能电磁屏蔽管理。","authors":"Prem Pal Singh, Bhanu Bhusan Khatua","doi":"10.1039/d4mh01127a","DOIUrl":null,"url":null,"abstract":"<p><p>A synchronous way of energy generation and storage in a single portable device is in high demand for the development of high-end electromagnetic interference (EMI) free modern electronics. Thus, this study highlights the devising of a piezoelectrically self-chargeable symmetric supercapacitor (PSCS) device using a polyvinyl alcohol (PVA)/succulent inspired grown g-C<sub>3</sub>N<sub>4</sub>@lithium sodium niobate (GNLNN)/potassium hydroxide (KOH) based piezo separator with GNLNN electrode. The GNLNN electrode exhibits a surface capacitive controlled specific capacitance of 503 F g<sup>-1</sup>. The PSCS device exhibits an energy density of 15.3 W h kg<sup>-1</sup> and a power density of 4.2 kW kg<sup>-1</sup> with an impressive capacitive retention capability of 93.2% after 6000 cycles of charging-discharging. The PSCS device can be charged up to 393 mV within 180 s under 14.2 N of cyclic pressing by human finger imparting. The fabricated PSCS device was also investigated for self-charging potential regulated smart EMI shielding applications. The smart PSCS device achieves an 88.3 dB increment from 40.9 dB of EMI shielding under charging from 0 mV to 300 mV. The increased charging potential of the PSCS device enhances the destructive interference and leads to boosted absorption and decreased reflection of incident EM radiation.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Succulent inspired grown g-C<sub>3</sub>N<sub>4</sub>@lithium sodium niobate for supercapacitors and piezo-tuned electrochemical potential controlled smart electromagnetic shielding management.\",\"authors\":\"Prem Pal Singh, Bhanu Bhusan Khatua\",\"doi\":\"10.1039/d4mh01127a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A synchronous way of energy generation and storage in a single portable device is in high demand for the development of high-end electromagnetic interference (EMI) free modern electronics. Thus, this study highlights the devising of a piezoelectrically self-chargeable symmetric supercapacitor (PSCS) device using a polyvinyl alcohol (PVA)/succulent inspired grown g-C<sub>3</sub>N<sub>4</sub>@lithium sodium niobate (GNLNN)/potassium hydroxide (KOH) based piezo separator with GNLNN electrode. The GNLNN electrode exhibits a surface capacitive controlled specific capacitance of 503 F g<sup>-1</sup>. The PSCS device exhibits an energy density of 15.3 W h kg<sup>-1</sup> and a power density of 4.2 kW kg<sup>-1</sup> with an impressive capacitive retention capability of 93.2% after 6000 cycles of charging-discharging. The PSCS device can be charged up to 393 mV within 180 s under 14.2 N of cyclic pressing by human finger imparting. The fabricated PSCS device was also investigated for self-charging potential regulated smart EMI shielding applications. The smart PSCS device achieves an 88.3 dB increment from 40.9 dB of EMI shielding under charging from 0 mV to 300 mV. The increased charging potential of the PSCS device enhances the destructive interference and leads to boosted absorption and decreased reflection of incident EM radiation.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01127a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01127a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

要开发无电磁干扰(EMI)的高端现代电子产品,就必须在单个便携式设备中同步实现能量生成和存储。因此,本研究重点介绍了利用聚乙烯醇(PVA)/琥珀激发生长的 g-C3N4@铌酸钠锂(GNLNN)/氢氧化钾(KOH)压电分离器与 GNLNN 电极设计的压电自充电对称超级电容器(PSCS)装置。GNLNN 电极的表面电容控制比电容为 503 F g-1。PSCS 器件的能量密度为 15.3 W h kg-1,功率密度为 4.2 kW kg-1,充电-放电循环 6000 次后,电容保持能力达到 93.2%,令人印象深刻。该 PSCS 器件在人体手指施加 14.2 牛的循环压力下,可在 180 秒内充电至 393 mV。此外,还对制作的 PSCS 器件的自充电潜力进行了研究,以规范智能 EMI 屏蔽应用。在从 0 mV 到 300 mV 的充电过程中,智能 PSCS 器件的 EMI 屏蔽从 40.9 dB 提高了 88.3 dB。PSCS 器件充电电位的增加增强了破坏性干扰,并导致入射电磁辐射的吸收增强和反射降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Succulent inspired grown g-C3N4@lithium sodium niobate for supercapacitors and piezo-tuned electrochemical potential controlled smart electromagnetic shielding management.

A synchronous way of energy generation and storage in a single portable device is in high demand for the development of high-end electromagnetic interference (EMI) free modern electronics. Thus, this study highlights the devising of a piezoelectrically self-chargeable symmetric supercapacitor (PSCS) device using a polyvinyl alcohol (PVA)/succulent inspired grown g-C3N4@lithium sodium niobate (GNLNN)/potassium hydroxide (KOH) based piezo separator with GNLNN electrode. The GNLNN electrode exhibits a surface capacitive controlled specific capacitance of 503 F g-1. The PSCS device exhibits an energy density of 15.3 W h kg-1 and a power density of 4.2 kW kg-1 with an impressive capacitive retention capability of 93.2% after 6000 cycles of charging-discharging. The PSCS device can be charged up to 393 mV within 180 s under 14.2 N of cyclic pressing by human finger imparting. The fabricated PSCS device was also investigated for self-charging potential regulated smart EMI shielding applications. The smart PSCS device achieves an 88.3 dB increment from 40.9 dB of EMI shielding under charging from 0 mV to 300 mV. The increased charging potential of the PSCS device enhances the destructive interference and leads to boosted absorption and decreased reflection of incident EM radiation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
期刊最新文献
Functionalization of monolithic MOF thin films with hydrocarbon chains to achieve superhydrophobic surfaces with tunable water adhesion strength. Long-life graphite-lithium sulfide full cells enabled through a solvent Co-intercalation-free electrolyte design. Stabilizing molecular catalysts on metal oxide surfaces using molecular layer deposition for efficient water oxidation. Studies of the mechanically induced reactivity of graphene with water using a 2D-materials strain reactor. Inside back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1