Jinlun Wu, Wenyi He, Ruijun Xu, Yang Li, Dingcai Wu, Zifeng Yang, Yong Li
{"title":"不对称多孔水凝胶包裹的硫化分子刷具有抗菌粘附、抗感染和促进伤口愈合的特性,可用于感染性伤口的治疗。","authors":"Jinlun Wu, Wenyi He, Ruijun Xu, Yang Li, Dingcai Wu, Zifeng Yang, Yong Li","doi":"10.1039/d4nr02343a","DOIUrl":null,"url":null,"abstract":"<p><p>Inspired by the hierarchical structure of the skin, asymmetric porous hydrogel encapsulating vulcanized molecular brushes (VMB@APH) as multifunctional wound dressing has been integrally constructed. The as-obtained VMB@APH effectively combines the anti-bacterial adhesion, anti-infection, and pro-healing properties, which is of great significance for accelerating the recovery of infected wounds.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric porous hydrogel encapsulating vulcanized molecular brushes with anti-bacterial adhesion, anti-infection, and pro-healing properties towards infected wound treatment.\",\"authors\":\"Jinlun Wu, Wenyi He, Ruijun Xu, Yang Li, Dingcai Wu, Zifeng Yang, Yong Li\",\"doi\":\"10.1039/d4nr02343a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inspired by the hierarchical structure of the skin, asymmetric porous hydrogel encapsulating vulcanized molecular brushes (VMB@APH) as multifunctional wound dressing has been integrally constructed. The as-obtained VMB@APH effectively combines the anti-bacterial adhesion, anti-infection, and pro-healing properties, which is of great significance for accelerating the recovery of infected wounds.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4nr02343a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr02343a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Asymmetric porous hydrogel encapsulating vulcanized molecular brushes with anti-bacterial adhesion, anti-infection, and pro-healing properties towards infected wound treatment.
Inspired by the hierarchical structure of the skin, asymmetric porous hydrogel encapsulating vulcanized molecular brushes (VMB@APH) as multifunctional wound dressing has been integrally constructed. The as-obtained VMB@APH effectively combines the anti-bacterial adhesion, anti-infection, and pro-healing properties, which is of great significance for accelerating the recovery of infected wounds.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.