T Blake Monroe, Ann V Hertzel, Deborah M Dickey, Thomas Hagen, Simon Vergara Santibanez, Islam A Berdaweel, Catherine Halley, Patrycja Puchalska, Ethan J Anderson, Christina D Camell, Paul D Robbins, David A Bernlohr
{"title":"脂质过氧化产物会诱发人类和鼠类细胞的羰基压力、线粒体功能障碍和细胞衰老。","authors":"T Blake Monroe, Ann V Hertzel, Deborah M Dickey, Thomas Hagen, Simon Vergara Santibanez, Islam A Berdaweel, Catherine Halley, Patrycja Puchalska, Ethan J Anderson, Christina D Camell, Paul D Robbins, David A Bernlohr","doi":"10.1111/acel.14367","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid enals are electrophilic products of lipid peroxidation that induce genotoxic and proteotoxic stress by covalent modification of DNA and proteins, respectively. As lipid enals accumulate to substantial amounts in visceral adipose during obesity and aging, we hypothesized that biogenic lipid enals may represent an endogenously generated, and therefore physiologically relevant, senescence inducers. To that end, we identified that 4-hydroxynonenal (4-HNE), 4-hydroxyhexenal (4-HHE) or 4-oxo-2-nonenal (4-ONE) initiate the cellular senescence program of IMR90 fibroblasts and murine adipose stem cells. In such cells, lipid enals induced accumulation of γH2AX foci, increased p53 signaling, enhanced expression of p21<sup>Cip1</sup>, and upregulated the expression and secretion of numerous cytokines, chemokines, and regulatory factors independently from NF-κB activation. Concomitantly, lipid enal treatment resulted in covalent modification of mitochondrial proteins, reduced mitochondrial spare respiratory capacity, altered nucleotide pools, and increased the phosphorylation of AMP kinase. Lipid-induced senescent cells upregulated BCL2L1 (Bcl-xL) and BCL2L2 (Bcl-w). and were resistant to apoptosis while pharmacologic inhibition of BAX/BAK macropores attenuated lipid-induced senescence. In situ, the 4-HNE scavenger L-carnosine ameliorated the development of the cellular senescence, while in visceral fat of obese C57BL/6J mice, L-carnosine reduced the abundance of 4-HNE-modified proteins and blunted the expression of senescence biomarkers CDKN1A (p21<sup>Cip1</sup>), PLAUR, BCL2L1, and BCL2L2. Taken together, the results suggest that lipid enals are endogenous regulators of cellular senescence and that biogenic lipid-induced senescence (BLIS) may represent a mechanistic link between oxidative stress and age-dependent pathologies.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14367"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709094/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lipid peroxidation products induce carbonyl stress, mitochondrial dysfunction, and cellular senescence in human and murine cells.\",\"authors\":\"T Blake Monroe, Ann V Hertzel, Deborah M Dickey, Thomas Hagen, Simon Vergara Santibanez, Islam A Berdaweel, Catherine Halley, Patrycja Puchalska, Ethan J Anderson, Christina D Camell, Paul D Robbins, David A Bernlohr\",\"doi\":\"10.1111/acel.14367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lipid enals are electrophilic products of lipid peroxidation that induce genotoxic and proteotoxic stress by covalent modification of DNA and proteins, respectively. As lipid enals accumulate to substantial amounts in visceral adipose during obesity and aging, we hypothesized that biogenic lipid enals may represent an endogenously generated, and therefore physiologically relevant, senescence inducers. To that end, we identified that 4-hydroxynonenal (4-HNE), 4-hydroxyhexenal (4-HHE) or 4-oxo-2-nonenal (4-ONE) initiate the cellular senescence program of IMR90 fibroblasts and murine adipose stem cells. In such cells, lipid enals induced accumulation of γH2AX foci, increased p53 signaling, enhanced expression of p21<sup>Cip1</sup>, and upregulated the expression and secretion of numerous cytokines, chemokines, and regulatory factors independently from NF-κB activation. Concomitantly, lipid enal treatment resulted in covalent modification of mitochondrial proteins, reduced mitochondrial spare respiratory capacity, altered nucleotide pools, and increased the phosphorylation of AMP kinase. Lipid-induced senescent cells upregulated BCL2L1 (Bcl-xL) and BCL2L2 (Bcl-w). and were resistant to apoptosis while pharmacologic inhibition of BAX/BAK macropores attenuated lipid-induced senescence. In situ, the 4-HNE scavenger L-carnosine ameliorated the development of the cellular senescence, while in visceral fat of obese C57BL/6J mice, L-carnosine reduced the abundance of 4-HNE-modified proteins and blunted the expression of senescence biomarkers CDKN1A (p21<sup>Cip1</sup>), PLAUR, BCL2L1, and BCL2L2. Taken together, the results suggest that lipid enals are endogenous regulators of cellular senescence and that biogenic lipid-induced senescence (BLIS) may represent a mechanistic link between oxidative stress and age-dependent pathologies.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\" \",\"pages\":\"e14367\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709094/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.14367\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14367","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Lipid peroxidation products induce carbonyl stress, mitochondrial dysfunction, and cellular senescence in human and murine cells.
Lipid enals are electrophilic products of lipid peroxidation that induce genotoxic and proteotoxic stress by covalent modification of DNA and proteins, respectively. As lipid enals accumulate to substantial amounts in visceral adipose during obesity and aging, we hypothesized that biogenic lipid enals may represent an endogenously generated, and therefore physiologically relevant, senescence inducers. To that end, we identified that 4-hydroxynonenal (4-HNE), 4-hydroxyhexenal (4-HHE) or 4-oxo-2-nonenal (4-ONE) initiate the cellular senescence program of IMR90 fibroblasts and murine adipose stem cells. In such cells, lipid enals induced accumulation of γH2AX foci, increased p53 signaling, enhanced expression of p21Cip1, and upregulated the expression and secretion of numerous cytokines, chemokines, and regulatory factors independently from NF-κB activation. Concomitantly, lipid enal treatment resulted in covalent modification of mitochondrial proteins, reduced mitochondrial spare respiratory capacity, altered nucleotide pools, and increased the phosphorylation of AMP kinase. Lipid-induced senescent cells upregulated BCL2L1 (Bcl-xL) and BCL2L2 (Bcl-w). and were resistant to apoptosis while pharmacologic inhibition of BAX/BAK macropores attenuated lipid-induced senescence. In situ, the 4-HNE scavenger L-carnosine ameliorated the development of the cellular senescence, while in visceral fat of obese C57BL/6J mice, L-carnosine reduced the abundance of 4-HNE-modified proteins and blunted the expression of senescence biomarkers CDKN1A (p21Cip1), PLAUR, BCL2L1, and BCL2L2. Taken together, the results suggest that lipid enals are endogenous regulators of cellular senescence and that biogenic lipid-induced senescence (BLIS) may represent a mechanistic link between oxidative stress and age-dependent pathologies.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.