Steven K Malin, Daniel J Battillo, Michal S Beeri, Maja Mustapic, Francheska Delgado-Peraza, Dimitrios Kapogiannis
{"title":"两周的运动会改变患有糖尿病前期的老年人的神经细胞外囊泡胰岛素信号蛋白和前BDNF。","authors":"Steven K Malin, Daniel J Battillo, Michal S Beeri, Maja Mustapic, Francheska Delgado-Peraza, Dimitrios Kapogiannis","doi":"10.1111/acel.14369","DOIUrl":null,"url":null,"abstract":"<p><p>Adults with prediabetes are at risk for Alzheimer's Disease and Related Dementia (ADRD). While exercise may lower ADRD risk, the exact mechanism is unclear. We tested the hypothesis that short-term exercise would raise neuronal insulin signaling and pro-BDNF in neuronal extracellular vesicles (nEVs) in prediabetes. Twenty-one older adults (18F, 60.0 ± 8.6 yrs.; BMI: 33.5 ± 1.1 kg/m<sup>2</sup>) with prediabetes (ADA criteria; 75 g OGTT) were randomized to 12 supervised work-matched continuous (n = 13, 70% HR<sub>peak</sub>) or interval (n = 8, 90% HR<sub>peak</sub> and 50% HR<sub>peak</sub> for 3 min each) sessions over 2-wks for 60 min/d. Aerobic fitness (VO<sub>2</sub>peak) and body weight were assessed. After an overnight fast, whole-body glucose tolerance (total area under the curve, tAUC) and insulin sensitivity (SIis) were determined from a 120 min 75 g OGTT. nEVs were acquired from 0 and 60 min time-points of the OGTT, and levels of insulin signaling proteins (i.e., p-IRS-1, total-/p-Akt, pERK1/2, pJNK1/2, and pp38) and pro-BNDF were measured. OGTT stimulatory effects were calculated from protein differences (i.e., OGTT 60-0 min). Adults were collapsed into a single group as exercise intensity did not affect nEV outcomes. Exercise raised VO<sub>2</sub>peak (+1.4 ± 2.0 mL/kg/min, p = 0.008) and insulin sensitivity (p = 0.01) as well as decreased weight (-0.4 ± 0.9 kg, p = 0.04) and whole-body glucose tAUC<sub>120min</sub> (p = 0.02). Training lowered 0-min pro-BDNF (704.1 ± 1019.0 vs. 414.5 ± 533.5, p = 0.04) and increased OGTT-stimulated tAkt (-51.8 ± 147.2 vs. 95 ± 204.5 a.u., p = 0.01), which was paralleled by reduced pAkt/tAkt at 60 min of the OGTT (1.3 ± 0.2 vs. 1.2 ± 0.1 a.u., p = 0.04). Thus, 2 weeks of exercise altered neuronal insulin signaling responses to glucose ingestion and lowered pro-BNDF among adults with prediabetes, thereby potentially lowering ADRD risk.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14369"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709104/pdf/","citationCount":"0","resultStr":"{\"title\":\"Two weeks of exercise alters neuronal extracellular vesicle insulin signaling proteins and pro-BDNF in older adults with prediabetes.\",\"authors\":\"Steven K Malin, Daniel J Battillo, Michal S Beeri, Maja Mustapic, Francheska Delgado-Peraza, Dimitrios Kapogiannis\",\"doi\":\"10.1111/acel.14369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adults with prediabetes are at risk for Alzheimer's Disease and Related Dementia (ADRD). While exercise may lower ADRD risk, the exact mechanism is unclear. We tested the hypothesis that short-term exercise would raise neuronal insulin signaling and pro-BDNF in neuronal extracellular vesicles (nEVs) in prediabetes. Twenty-one older adults (18F, 60.0 ± 8.6 yrs.; BMI: 33.5 ± 1.1 kg/m<sup>2</sup>) with prediabetes (ADA criteria; 75 g OGTT) were randomized to 12 supervised work-matched continuous (n = 13, 70% HR<sub>peak</sub>) or interval (n = 8, 90% HR<sub>peak</sub> and 50% HR<sub>peak</sub> for 3 min each) sessions over 2-wks for 60 min/d. Aerobic fitness (VO<sub>2</sub>peak) and body weight were assessed. After an overnight fast, whole-body glucose tolerance (total area under the curve, tAUC) and insulin sensitivity (SIis) were determined from a 120 min 75 g OGTT. nEVs were acquired from 0 and 60 min time-points of the OGTT, and levels of insulin signaling proteins (i.e., p-IRS-1, total-/p-Akt, pERK1/2, pJNK1/2, and pp38) and pro-BNDF were measured. OGTT stimulatory effects were calculated from protein differences (i.e., OGTT 60-0 min). Adults were collapsed into a single group as exercise intensity did not affect nEV outcomes. Exercise raised VO<sub>2</sub>peak (+1.4 ± 2.0 mL/kg/min, p = 0.008) and insulin sensitivity (p = 0.01) as well as decreased weight (-0.4 ± 0.9 kg, p = 0.04) and whole-body glucose tAUC<sub>120min</sub> (p = 0.02). Training lowered 0-min pro-BDNF (704.1 ± 1019.0 vs. 414.5 ± 533.5, p = 0.04) and increased OGTT-stimulated tAkt (-51.8 ± 147.2 vs. 95 ± 204.5 a.u., p = 0.01), which was paralleled by reduced pAkt/tAkt at 60 min of the OGTT (1.3 ± 0.2 vs. 1.2 ± 0.1 a.u., p = 0.04). Thus, 2 weeks of exercise altered neuronal insulin signaling responses to glucose ingestion and lowered pro-BNDF among adults with prediabetes, thereby potentially lowering ADRD risk.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\" \",\"pages\":\"e14369\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709104/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.14369\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14369","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Two weeks of exercise alters neuronal extracellular vesicle insulin signaling proteins and pro-BDNF in older adults with prediabetes.
Adults with prediabetes are at risk for Alzheimer's Disease and Related Dementia (ADRD). While exercise may lower ADRD risk, the exact mechanism is unclear. We tested the hypothesis that short-term exercise would raise neuronal insulin signaling and pro-BDNF in neuronal extracellular vesicles (nEVs) in prediabetes. Twenty-one older adults (18F, 60.0 ± 8.6 yrs.; BMI: 33.5 ± 1.1 kg/m2) with prediabetes (ADA criteria; 75 g OGTT) were randomized to 12 supervised work-matched continuous (n = 13, 70% HRpeak) or interval (n = 8, 90% HRpeak and 50% HRpeak for 3 min each) sessions over 2-wks for 60 min/d. Aerobic fitness (VO2peak) and body weight were assessed. After an overnight fast, whole-body glucose tolerance (total area under the curve, tAUC) and insulin sensitivity (SIis) were determined from a 120 min 75 g OGTT. nEVs were acquired from 0 and 60 min time-points of the OGTT, and levels of insulin signaling proteins (i.e., p-IRS-1, total-/p-Akt, pERK1/2, pJNK1/2, and pp38) and pro-BNDF were measured. OGTT stimulatory effects were calculated from protein differences (i.e., OGTT 60-0 min). Adults were collapsed into a single group as exercise intensity did not affect nEV outcomes. Exercise raised VO2peak (+1.4 ± 2.0 mL/kg/min, p = 0.008) and insulin sensitivity (p = 0.01) as well as decreased weight (-0.4 ± 0.9 kg, p = 0.04) and whole-body glucose tAUC120min (p = 0.02). Training lowered 0-min pro-BDNF (704.1 ± 1019.0 vs. 414.5 ± 533.5, p = 0.04) and increased OGTT-stimulated tAkt (-51.8 ± 147.2 vs. 95 ± 204.5 a.u., p = 0.01), which was paralleled by reduced pAkt/tAkt at 60 min of the OGTT (1.3 ± 0.2 vs. 1.2 ± 0.1 a.u., p = 0.04). Thus, 2 weeks of exercise altered neuronal insulin signaling responses to glucose ingestion and lowered pro-BNDF among adults with prediabetes, thereby potentially lowering ADRD risk.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.