{"title":"异氰酸酯和羧酸的脱羧偶联酰胺合成。","authors":"R Wang, W H Liu","doi":"10.1002/cbic.202400770","DOIUrl":null,"url":null,"abstract":"<p><p>Isocyanates are versatile electrophiles that can react with a wide range of nucleophiles to afford important organic structures. Although the reactions between isocyanates and alcohols, amines and organometallic reagents have been well established, the synthesis of amides through the decarboxylative condensation of carboxylic acids and isocyanates is less appreciated. In this review, the synthesis of isocyanates and its application on amide synthesis through the condensation with carboxylic acids are summarized and discussed. It is our hope that this review will attract more attention to this less mentioned transformation and inspire new developments in the fields of organic synthesis, polymer synthesis and chemical biology.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202400770"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amide Synthesis from Decarboxylative Coupling of Isocyanates and Carboxylic Acids.\",\"authors\":\"R Wang, W H Liu\",\"doi\":\"10.1002/cbic.202400770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Isocyanates are versatile electrophiles that can react with a wide range of nucleophiles to afford important organic structures. Although the reactions between isocyanates and alcohols, amines and organometallic reagents have been well established, the synthesis of amides through the decarboxylative condensation of carboxylic acids and isocyanates is less appreciated. In this review, the synthesis of isocyanates and its application on amide synthesis through the condensation with carboxylic acids are summarized and discussed. It is our hope that this review will attract more attention to this less mentioned transformation and inspire new developments in the fields of organic synthesis, polymer synthesis and chemical biology.</p>\",\"PeriodicalId\":140,\"journal\":{\"name\":\"ChemBioChem\",\"volume\":\" \",\"pages\":\"e202400770\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioChem\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbic.202400770\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400770","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Amide Synthesis from Decarboxylative Coupling of Isocyanates and Carboxylic Acids.
Isocyanates are versatile electrophiles that can react with a wide range of nucleophiles to afford important organic structures. Although the reactions between isocyanates and alcohols, amines and organometallic reagents have been well established, the synthesis of amides through the decarboxylative condensation of carboxylic acids and isocyanates is less appreciated. In this review, the synthesis of isocyanates and its application on amide synthesis through the condensation with carboxylic acids are summarized and discussed. It is our hope that this review will attract more attention to this less mentioned transformation and inspire new developments in the fields of organic synthesis, polymer synthesis and chemical biology.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).