Elena Garcia-Perez, Marta Vazquez-Vilar, Rosa Lozano-Duran, Diego Orzaez
{"title":"CuBe:基于 geminivirus 的铜调节表达系统,适合收获后激活。","authors":"Elena Garcia-Perez, Marta Vazquez-Vilar, Rosa Lozano-Duran, Diego Orzaez","doi":"10.1111/pbi.14485","DOIUrl":null,"url":null,"abstract":"<p><p>The growing demand for sustainable platforms for biomolecule manufacturing has fuelled the development of plant-based production systems. Agroinfiltration, the current industry standard, offers several advantages but faces limitations for large-scale production due to high operational costs and batch-to-batch variability. Alternatively, here, we describe the CuBe system, a novel bean yellow dwarf virus (BeYDV)-derived conditional replicative expression platform stably transformed in Nicotiana benthamiana and activated by copper sulphate (CuSO<sub>4</sub>), an inexpensive and widely used agricultural input. The CuBe system utilizes a synthetic circuit of four genetic modules integrated into the plant genome: (i) a replicative vector harbouring the gene of interest (GOI) flanked by cis-acting elements for geminiviral replication and novelly arranged to enable transgene transcription exclusively upon formation of the circular replicon, (ii) copper-inducible Rep/RepA proteins essential for replicon formation, (iii) the yeast-derived CUP2-Gal4 copper-responsive transcriptional activator for Rep/RepA expression, and (iv) a copper-inducible Flp recombinase to minimize basal Rep/RepA expression. CuSO<sub>4</sub> application triggers the activation of the system, leading to the formation of extrachromosomal replicons, expression of the GOI, and accumulation of the desired recombinant protein. We demonstrate the functionality of the CuBe system in N. benthamiana plants expressing high levels of eGFP and an anti-SARS-CoV-2 antibody upon copper treatment. Notably, the system is functional in post-harvest applications, a strategy with high potential impact for large-scale biomanufacturing. This work presents the CuBe system as a promising alternative to agroinfiltration for cost-effective and scalable production of recombinant proteins in plants.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CuBe: a geminivirus-based copper-regulated expression system suitable for post-harvest activation.\",\"authors\":\"Elena Garcia-Perez, Marta Vazquez-Vilar, Rosa Lozano-Duran, Diego Orzaez\",\"doi\":\"10.1111/pbi.14485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The growing demand for sustainable platforms for biomolecule manufacturing has fuelled the development of plant-based production systems. Agroinfiltration, the current industry standard, offers several advantages but faces limitations for large-scale production due to high operational costs and batch-to-batch variability. Alternatively, here, we describe the CuBe system, a novel bean yellow dwarf virus (BeYDV)-derived conditional replicative expression platform stably transformed in Nicotiana benthamiana and activated by copper sulphate (CuSO<sub>4</sub>), an inexpensive and widely used agricultural input. The CuBe system utilizes a synthetic circuit of four genetic modules integrated into the plant genome: (i) a replicative vector harbouring the gene of interest (GOI) flanked by cis-acting elements for geminiviral replication and novelly arranged to enable transgene transcription exclusively upon formation of the circular replicon, (ii) copper-inducible Rep/RepA proteins essential for replicon formation, (iii) the yeast-derived CUP2-Gal4 copper-responsive transcriptional activator for Rep/RepA expression, and (iv) a copper-inducible Flp recombinase to minimize basal Rep/RepA expression. CuSO<sub>4</sub> application triggers the activation of the system, leading to the formation of extrachromosomal replicons, expression of the GOI, and accumulation of the desired recombinant protein. We demonstrate the functionality of the CuBe system in N. benthamiana plants expressing high levels of eGFP and an anti-SARS-CoV-2 antibody upon copper treatment. Notably, the system is functional in post-harvest applications, a strategy with high potential impact for large-scale biomanufacturing. This work presents the CuBe system as a promising alternative to agroinfiltration for cost-effective and scalable production of recombinant proteins in plants.</p>\",\"PeriodicalId\":221,\"journal\":{\"name\":\"Plant Biotechnology Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/pbi.14485\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14485","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
CuBe: a geminivirus-based copper-regulated expression system suitable for post-harvest activation.
The growing demand for sustainable platforms for biomolecule manufacturing has fuelled the development of plant-based production systems. Agroinfiltration, the current industry standard, offers several advantages but faces limitations for large-scale production due to high operational costs and batch-to-batch variability. Alternatively, here, we describe the CuBe system, a novel bean yellow dwarf virus (BeYDV)-derived conditional replicative expression platform stably transformed in Nicotiana benthamiana and activated by copper sulphate (CuSO4), an inexpensive and widely used agricultural input. The CuBe system utilizes a synthetic circuit of four genetic modules integrated into the plant genome: (i) a replicative vector harbouring the gene of interest (GOI) flanked by cis-acting elements for geminiviral replication and novelly arranged to enable transgene transcription exclusively upon formation of the circular replicon, (ii) copper-inducible Rep/RepA proteins essential for replicon formation, (iii) the yeast-derived CUP2-Gal4 copper-responsive transcriptional activator for Rep/RepA expression, and (iv) a copper-inducible Flp recombinase to minimize basal Rep/RepA expression. CuSO4 application triggers the activation of the system, leading to the formation of extrachromosomal replicons, expression of the GOI, and accumulation of the desired recombinant protein. We demonstrate the functionality of the CuBe system in N. benthamiana plants expressing high levels of eGFP and an anti-SARS-CoV-2 antibody upon copper treatment. Notably, the system is functional in post-harvest applications, a strategy with high potential impact for large-scale biomanufacturing. This work presents the CuBe system as a promising alternative to agroinfiltration for cost-effective and scalable production of recombinant proteins in plants.
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.