Junnan Cui, Haobo Shu, Xin Gu, Shutong Wu, Xiaodan Liu, Pan Cao
{"title":"通过聚多巴胺/银纳米粒子的表面改性,提高植入材料的抗菌性能和稳定性。","authors":"Junnan Cui, Haobo Shu, Xin Gu, Shutong Wu, Xiaodan Liu, Pan Cao","doi":"10.1016/j.colsurfb.2024.114327","DOIUrl":null,"url":null,"abstract":"<p><p>Implants and various medical devices possess surfaces that are prone to bacterial colonization due to bacterial adhesion and the formation of biofilms. Therefore, inhibiting bacterial colonization is a crucial strategy for preventing infections. Although there have been reports on antibacterial surfaces, the synthetic processes involved are often complex and labor-intensive, which significantly limits their practical applications. Furthermore, there is a lack of studies investigating the interplay between antibacterial performance and stability. In this study, silver ions were reduced to form silver nanoparticles, which were then loaded onto polydopamine (PDA) particles. The successful assembly of PDA-Ag on the surface of the titanium alloy was confirmed through X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDS). The morphologies of the micro- and nanoparticles, as well as the surface morphology after deposition, were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and a 3D optical profilometer. The abrasion experiments conducted on the three surfaces demonstrated that the TC4@PDA-Ag3 surface exhibited superior friction performance compared to the other two surfaces. Antibacterial and antibacterial stability experiments were conducted on this series of surfaces. The results indicated that the adhesion rate of TC4@PDA-Ag3 on Escherichia coli (E. coli) was 99.68 %, while the antibacterial efficiency against Staphylococcus aureus (S. aureus) was 95.97 %. This study presents a novel approach to address the issue of implant surface infections by demonstrating resistance to bacterial adhesion and colonization, specifically against E. coli and S. aureus.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114327"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing antibacterial performance and stability of implant materials through surface modification with polydopamine/silver nanoparticles.\",\"authors\":\"Junnan Cui, Haobo Shu, Xin Gu, Shutong Wu, Xiaodan Liu, Pan Cao\",\"doi\":\"10.1016/j.colsurfb.2024.114327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Implants and various medical devices possess surfaces that are prone to bacterial colonization due to bacterial adhesion and the formation of biofilms. Therefore, inhibiting bacterial colonization is a crucial strategy for preventing infections. Although there have been reports on antibacterial surfaces, the synthetic processes involved are often complex and labor-intensive, which significantly limits their practical applications. Furthermore, there is a lack of studies investigating the interplay between antibacterial performance and stability. In this study, silver ions were reduced to form silver nanoparticles, which were then loaded onto polydopamine (PDA) particles. The successful assembly of PDA-Ag on the surface of the titanium alloy was confirmed through X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDS). The morphologies of the micro- and nanoparticles, as well as the surface morphology after deposition, were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and a 3D optical profilometer. The abrasion experiments conducted on the three surfaces demonstrated that the TC4@PDA-Ag3 surface exhibited superior friction performance compared to the other two surfaces. Antibacterial and antibacterial stability experiments were conducted on this series of surfaces. The results indicated that the adhesion rate of TC4@PDA-Ag3 on Escherichia coli (E. coli) was 99.68 %, while the antibacterial efficiency against Staphylococcus aureus (S. aureus) was 95.97 %. This study presents a novel approach to address the issue of implant surface infections by demonstrating resistance to bacterial adhesion and colonization, specifically against E. coli and S. aureus.</p>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"245 \",\"pages\":\"114327\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1016/j.colsurfb.2024.114327\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114327","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Enhancing antibacterial performance and stability of implant materials through surface modification with polydopamine/silver nanoparticles.
Implants and various medical devices possess surfaces that are prone to bacterial colonization due to bacterial adhesion and the formation of biofilms. Therefore, inhibiting bacterial colonization is a crucial strategy for preventing infections. Although there have been reports on antibacterial surfaces, the synthetic processes involved are often complex and labor-intensive, which significantly limits their practical applications. Furthermore, there is a lack of studies investigating the interplay between antibacterial performance and stability. In this study, silver ions were reduced to form silver nanoparticles, which were then loaded onto polydopamine (PDA) particles. The successful assembly of PDA-Ag on the surface of the titanium alloy was confirmed through X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDS). The morphologies of the micro- and nanoparticles, as well as the surface morphology after deposition, were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and a 3D optical profilometer. The abrasion experiments conducted on the three surfaces demonstrated that the TC4@PDA-Ag3 surface exhibited superior friction performance compared to the other two surfaces. Antibacterial and antibacterial stability experiments were conducted on this series of surfaces. The results indicated that the adhesion rate of TC4@PDA-Ag3 on Escherichia coli (E. coli) was 99.68 %, while the antibacterial efficiency against Staphylococcus aureus (S. aureus) was 95.97 %. This study presents a novel approach to address the issue of implant surface infections by demonstrating resistance to bacterial adhesion and colonization, specifically against E. coli and S. aureus.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.