在中国亚热带果园系统中,豆科绿色覆盖物通过改善氮素供应改变了微生物群落结构并增加了微生物多样性。

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2024-12-10 Epub Date: 2024-10-12 DOI:10.1016/j.scitotenv.2024.176891
Na Wang, Le Li, Mengmeng Gou, Jianwen Hu, Huiling Chen, Wenfa Xiao, Changfu Liu
{"title":"在中国亚热带果园系统中,豆科绿色覆盖物通过改善氮素供应改变了微生物群落结构并增加了微生物多样性。","authors":"Na Wang, Le Li, Mengmeng Gou, Jianwen Hu, Huiling Chen, Wenfa Xiao, Changfu Liu","doi":"10.1016/j.scitotenv.2024.176891","DOIUrl":null,"url":null,"abstract":"<p><p>Microorganisms, the major decomposers of plant residues, are crucial for soil nutrient cycling. Living grass mulching effectively alters microbial community structure and promotes nutrient cycling. However, its consistency with mulching ages and growth periods remains unclear. Therefore, this study aims to clarify the dynamic characteristics of microbial communities and enzyme activities across different mulching ages. In this study, high-throughput sequencing technology was used to investigate bacterial and fungal community evolution in three mulching treatments with Vicia villosa for 8 years (VV_8), 4 years (VV_4), and clean tillage in a citrus orchard. This study covered three growth periods (citrus-grass: spring sprouting to budding period [SSBP], fruit swelling to withering period [FSWP], and fruit maturity to seeding period [FMSP]). The results showed that VV_4 and VV_8 treatments increased bacterial and fungal alpha diversity as well as the activities of nitrogen (N), carbon (C), and phosphorus cycling enzymes. C-cycling enzyme activity was the primary key factor driving changes in microbial diversity across growth periods. Under leguminous green mulching, bacteria alpha diversity increased the most during FSWP, while fungi increased the most during FMSP. Additionally, the relative abundance of Ascomycota and Basidiomycota significantly increased during the FSWP and FMSP, reaching 63.65-73.80 % and 79.73-84.51 %, respectively. With increasing mulching ages, the structural stability and synergistic effects of microorganisms were correspondingly enhanced. Furthermore, available nutrients determined microbial community evolution, with N availability being a key factor influencing microbial diversity, especially fungal diversity. In conclusion, as mulching ages increase, improved nutrient availability gradually enhances microbial diversity, synergistic interactions, and nutrient cycling functions, with copiotrophic taxa occupying a key position in the microbial network. FSWP is a critical turning point for enhancing microbial activity and C-cycling function. This study offers theoretical support for developing microbial regulation strategies to improve soil quality in orchard management practices.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"955 ","pages":"176891"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leguminous green mulching alters the microbial community structure and increases microbial diversity by improving nitrogen availability in subtropical orchard systems in China.\",\"authors\":\"Na Wang, Le Li, Mengmeng Gou, Jianwen Hu, Huiling Chen, Wenfa Xiao, Changfu Liu\",\"doi\":\"10.1016/j.scitotenv.2024.176891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microorganisms, the major decomposers of plant residues, are crucial for soil nutrient cycling. Living grass mulching effectively alters microbial community structure and promotes nutrient cycling. However, its consistency with mulching ages and growth periods remains unclear. Therefore, this study aims to clarify the dynamic characteristics of microbial communities and enzyme activities across different mulching ages. In this study, high-throughput sequencing technology was used to investigate bacterial and fungal community evolution in three mulching treatments with Vicia villosa for 8 years (VV_8), 4 years (VV_4), and clean tillage in a citrus orchard. This study covered three growth periods (citrus-grass: spring sprouting to budding period [SSBP], fruit swelling to withering period [FSWP], and fruit maturity to seeding period [FMSP]). The results showed that VV_4 and VV_8 treatments increased bacterial and fungal alpha diversity as well as the activities of nitrogen (N), carbon (C), and phosphorus cycling enzymes. C-cycling enzyme activity was the primary key factor driving changes in microbial diversity across growth periods. Under leguminous green mulching, bacteria alpha diversity increased the most during FSWP, while fungi increased the most during FMSP. Additionally, the relative abundance of Ascomycota and Basidiomycota significantly increased during the FSWP and FMSP, reaching 63.65-73.80 % and 79.73-84.51 %, respectively. With increasing mulching ages, the structural stability and synergistic effects of microorganisms were correspondingly enhanced. Furthermore, available nutrients determined microbial community evolution, with N availability being a key factor influencing microbial diversity, especially fungal diversity. In conclusion, as mulching ages increase, improved nutrient availability gradually enhances microbial diversity, synergistic interactions, and nutrient cycling functions, with copiotrophic taxa occupying a key position in the microbial network. FSWP is a critical turning point for enhancing microbial activity and C-cycling function. This study offers theoretical support for developing microbial regulation strategies to improve soil quality in orchard management practices.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"955 \",\"pages\":\"176891\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.176891\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.176891","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

微生物是植物残体的主要分解者,对土壤养分循环至关重要。活草覆盖能有效改变微生物群落结构,促进养分循环。然而,其与覆盖年龄和生长期的一致性仍不清楚。因此,本研究旨在阐明不同覆盖年龄段微生物群落和酶活性的动态特征。本研究采用高通量测序技术研究了柑橘园中使用紫花地丁8年(VV_8)、4年(VV_4)和清洁耕作的三种地膜覆盖处理中细菌和真菌群落的演化。该研究涵盖了三个生长期(柑橘-禾本科植物:春季萌芽至萌芽期 [SSBP]、果实膨大至枯萎期 [FSWP] 和果实成熟至播种期 [FMSP])。结果表明,VV_4 和 VV_8 处理增加了细菌和真菌的α-多样性以及氮(N)、碳(C)和磷循环酶的活性。碳循环酶活性是驱动各生长期微生物多样性变化的主要关键因素。在豆科绿色地膜覆盖下,FSWP 期间细菌阿尔法多样性增加最多,而 FMSP 期间真菌增加最多。此外,子囊菌目(Ascomycota)和担子菌目(Basidiomycota)的相对丰度在 FSWP 和 FMSP 期间显著增加,分别达到 63.65-73.80 % 和 79.73-84.51 %。随着覆土年限的增加,微生物的结构稳定性和协同作用也相应增强。此外,可用养分决定了微生物群落的演化,其中氮的可用性是影响微生物多样性,尤其是真菌多样性的关键因素。总之,随着地膜覆盖年限的增加,养分可用性的提高会逐渐增强微生物的多样性、协同作用和养分循环功能,其中共生类群在微生物网络中占据关键地位。FSWP 是增强微生物活性和 C 循环功能的关键转折点。这项研究为制定微生物调控策略以改善果园管理实践中的土壤质量提供了理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leguminous green mulching alters the microbial community structure and increases microbial diversity by improving nitrogen availability in subtropical orchard systems in China.

Microorganisms, the major decomposers of plant residues, are crucial for soil nutrient cycling. Living grass mulching effectively alters microbial community structure and promotes nutrient cycling. However, its consistency with mulching ages and growth periods remains unclear. Therefore, this study aims to clarify the dynamic characteristics of microbial communities and enzyme activities across different mulching ages. In this study, high-throughput sequencing technology was used to investigate bacterial and fungal community evolution in three mulching treatments with Vicia villosa for 8 years (VV_8), 4 years (VV_4), and clean tillage in a citrus orchard. This study covered three growth periods (citrus-grass: spring sprouting to budding period [SSBP], fruit swelling to withering period [FSWP], and fruit maturity to seeding period [FMSP]). The results showed that VV_4 and VV_8 treatments increased bacterial and fungal alpha diversity as well as the activities of nitrogen (N), carbon (C), and phosphorus cycling enzymes. C-cycling enzyme activity was the primary key factor driving changes in microbial diversity across growth periods. Under leguminous green mulching, bacteria alpha diversity increased the most during FSWP, while fungi increased the most during FMSP. Additionally, the relative abundance of Ascomycota and Basidiomycota significantly increased during the FSWP and FMSP, reaching 63.65-73.80 % and 79.73-84.51 %, respectively. With increasing mulching ages, the structural stability and synergistic effects of microorganisms were correspondingly enhanced. Furthermore, available nutrients determined microbial community evolution, with N availability being a key factor influencing microbial diversity, especially fungal diversity. In conclusion, as mulching ages increase, improved nutrient availability gradually enhances microbial diversity, synergistic interactions, and nutrient cycling functions, with copiotrophic taxa occupying a key position in the microbial network. FSWP is a critical turning point for enhancing microbial activity and C-cycling function. This study offers theoretical support for developing microbial regulation strategies to improve soil quality in orchard management practices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Complex interactions of rare earth elements in aquatic systems: Comparing observed and predicted cellular responses on Mytilus galloprovincialis. Identification of pesticide mixtures to which French agricultural workers and farm-owners are exposed: Results from the Agriculture and Cancer (AGRICAN) cohort study. Dog swimming and ectoparasiticide water contamination in urban conservation areas: A case study on Hampstead Heath, London. Exploring compost production potential and its economic benefits and greenhouse gas mitigation in Addis Ababa, Ethiopia. Graphene-encapsulated nanocomposites: Synthesis, environmental applications, and future prospects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1