{"title":"开发克服基质效应的自动免疫质谱(iMS)定量方法:以类固醇激素为例。","authors":"Xiaoyi Yi, Xijiu Li, Huanchang Luo, Guanfeng Lin, Jianwei Zhou, Yufeng Xiong, Yingsong Wu","doi":"10.1016/j.talanta.2024.127041","DOIUrl":null,"url":null,"abstract":"<p><p>Liquid chromatography-tandem mass spectrometry (LC-MS/MS) shows great promise in clinical application for its high specificity, high sensitivity and wide linear range for the determination of small molecules. However, its application in clinical laboratory is hampered by matrix effect of clinical samples which could greatly affect quantification accuracy and the difficulty to be automated for the traditional sample preparation procedures. Thus, new techniques which could achieve selective enrichment to minimize matrix effect and automatic sample preparation of mass spectrometry are needed. We developed an immunologic mass spectrometry (iMS) method to overcome matrix effect and its clinical application was demonstrated for automatic analysis of testosterone (T), progesterone (P) and estradiol (E2) in human serum simultaneously. Firstly, three monoclonal antibodies were coupled to magnetic beads for selective enrichment of target hormones from serum. The immunomagnetic beads were separated, washed and eluted automatically for LC-MS/MS analysis. Analytical performance of the iMS method was validated and compared with traditional LC-MS/MS and chemiluminescence immunoassay (CLIA). Hormone levels were measured for 160 pregnancy women at different gestational weeks. Results showed that target hormones could be selectively captured with absolute recoveries of 93.9%-110.8 %. Relative responses for high, medium and low concentrations of the hormones between serum and methanol solution were 98.0%-109.7 %, 92.2%-105.3 % and 91.7%-96.0 % for T, P and E2, respectively. Calibration curves prepared in methanol solution, BSA solution and blank serum showed good consistency for the iMS method. The automated iMS method could overcome matrix effect of LC-MS/MS and cross-reaction of CLIA. Matrix effect of the iMS method was negligible as high specificity of target hormone enrichment before LC-MS/MS analysis. Matrix-matched calibration standards were no longer necessary for accurate quantification, which was of great benefit for the clinical application of mass spetrometry.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"282 ","pages":"127041"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an automated immunologic mass spectrometry (iMS) method to overcome matrix effect for quantification: Steroid hormones as the example.\",\"authors\":\"Xiaoyi Yi, Xijiu Li, Huanchang Luo, Guanfeng Lin, Jianwei Zhou, Yufeng Xiong, Yingsong Wu\",\"doi\":\"10.1016/j.talanta.2024.127041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liquid chromatography-tandem mass spectrometry (LC-MS/MS) shows great promise in clinical application for its high specificity, high sensitivity and wide linear range for the determination of small molecules. However, its application in clinical laboratory is hampered by matrix effect of clinical samples which could greatly affect quantification accuracy and the difficulty to be automated for the traditional sample preparation procedures. Thus, new techniques which could achieve selective enrichment to minimize matrix effect and automatic sample preparation of mass spectrometry are needed. We developed an immunologic mass spectrometry (iMS) method to overcome matrix effect and its clinical application was demonstrated for automatic analysis of testosterone (T), progesterone (P) and estradiol (E2) in human serum simultaneously. Firstly, three monoclonal antibodies were coupled to magnetic beads for selective enrichment of target hormones from serum. The immunomagnetic beads were separated, washed and eluted automatically for LC-MS/MS analysis. Analytical performance of the iMS method was validated and compared with traditional LC-MS/MS and chemiluminescence immunoassay (CLIA). Hormone levels were measured for 160 pregnancy women at different gestational weeks. Results showed that target hormones could be selectively captured with absolute recoveries of 93.9%-110.8 %. Relative responses for high, medium and low concentrations of the hormones between serum and methanol solution were 98.0%-109.7 %, 92.2%-105.3 % and 91.7%-96.0 % for T, P and E2, respectively. Calibration curves prepared in methanol solution, BSA solution and blank serum showed good consistency for the iMS method. The automated iMS method could overcome matrix effect of LC-MS/MS and cross-reaction of CLIA. Matrix effect of the iMS method was negligible as high specificity of target hormone enrichment before LC-MS/MS analysis. Matrix-matched calibration standards were no longer necessary for accurate quantification, which was of great benefit for the clinical application of mass spetrometry.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"282 \",\"pages\":\"127041\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2024.127041\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.127041","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Development of an automated immunologic mass spectrometry (iMS) method to overcome matrix effect for quantification: Steroid hormones as the example.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) shows great promise in clinical application for its high specificity, high sensitivity and wide linear range for the determination of small molecules. However, its application in clinical laboratory is hampered by matrix effect of clinical samples which could greatly affect quantification accuracy and the difficulty to be automated for the traditional sample preparation procedures. Thus, new techniques which could achieve selective enrichment to minimize matrix effect and automatic sample preparation of mass spectrometry are needed. We developed an immunologic mass spectrometry (iMS) method to overcome matrix effect and its clinical application was demonstrated for automatic analysis of testosterone (T), progesterone (P) and estradiol (E2) in human serum simultaneously. Firstly, three monoclonal antibodies were coupled to magnetic beads for selective enrichment of target hormones from serum. The immunomagnetic beads were separated, washed and eluted automatically for LC-MS/MS analysis. Analytical performance of the iMS method was validated and compared with traditional LC-MS/MS and chemiluminescence immunoassay (CLIA). Hormone levels were measured for 160 pregnancy women at different gestational weeks. Results showed that target hormones could be selectively captured with absolute recoveries of 93.9%-110.8 %. Relative responses for high, medium and low concentrations of the hormones between serum and methanol solution were 98.0%-109.7 %, 92.2%-105.3 % and 91.7%-96.0 % for T, P and E2, respectively. Calibration curves prepared in methanol solution, BSA solution and blank serum showed good consistency for the iMS method. The automated iMS method could overcome matrix effect of LC-MS/MS and cross-reaction of CLIA. Matrix effect of the iMS method was negligible as high specificity of target hormone enrichment before LC-MS/MS analysis. Matrix-matched calibration standards were no longer necessary for accurate quantification, which was of great benefit for the clinical application of mass spetrometry.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.