利用粗粒度分子动力学模拟了解洞穴孔对氧的 "缓冲作用"。

4区 医学 Q2 Biochemistry, Genetics and Molecular Biology Advances in experimental medicine and biology Pub Date : 2024-01-01 DOI:10.1007/978-3-031-67458-7_45
Samaneh Davoudi, An Ghysels
{"title":"利用粗粒度分子动力学模拟了解洞穴孔对氧的 \"缓冲作用\"。","authors":"Samaneh Davoudi, An Ghysels","doi":"10.1007/978-3-031-67458-7_45","DOIUrl":null,"url":null,"abstract":"<p><p>The \"oxygen paradox\" embodies the delicate interplay between two opposing biological processes involving oxygen (O<sub>2</sub>). O<sub>2</sub> is indispensable for aerobic metabolism, fuelling oxidative phosphorylation in mitochondria. However, excess O<sub>2</sub> can generate reactive species that harm cells. Thus, maintaining O<sub>2</sub> balance is paramount, requiring the prioritisation of its benefits while minimising potential harm. Previous research hypothesised that caveolae, specialised cholesterol-rich membrane structures with a curved morphology, regulate cellular O<sub>2</sub> levels. Their role in absorbing and controlling O<sub>2</sub> release to mitochondria remains unclear. To address this gap, we aim to explore how the structural features of caveolae, particularly membrane curvature, influence local O<sub>2</sub> levels. Using coarse-grained (CG) molecular dynamics simulations, we simulate a caveola-like curved membrane and select a CG bead as the O<sub>2</sub> model. Comparing a flat bilayer and a liposome of 10 nm diameter, composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), allows us to study changes in the O<sub>2</sub> free energy profile. Our findings reveal that curvature has a contrasting effect on the free energy of the outer and inner layers. These findings show the membrane curvature's impact on O<sub>2</sub> partitioning in the membrane and O<sub>2</sub> permeation barriers, paving the way towards our understanding of the role of caveolae curvature in O<sub>2</sub> homeostasis.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":"1463 ","pages":"271-275"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding Oxygen \\\"Buffering\\\" by Caveolae Using Coarse-Grained Molecular Dynamics Simulations.\",\"authors\":\"Samaneh Davoudi, An Ghysels\",\"doi\":\"10.1007/978-3-031-67458-7_45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The \\\"oxygen paradox\\\" embodies the delicate interplay between two opposing biological processes involving oxygen (O<sub>2</sub>). O<sub>2</sub> is indispensable for aerobic metabolism, fuelling oxidative phosphorylation in mitochondria. However, excess O<sub>2</sub> can generate reactive species that harm cells. Thus, maintaining O<sub>2</sub> balance is paramount, requiring the prioritisation of its benefits while minimising potential harm. Previous research hypothesised that caveolae, specialised cholesterol-rich membrane structures with a curved morphology, regulate cellular O<sub>2</sub> levels. Their role in absorbing and controlling O<sub>2</sub> release to mitochondria remains unclear. To address this gap, we aim to explore how the structural features of caveolae, particularly membrane curvature, influence local O<sub>2</sub> levels. Using coarse-grained (CG) molecular dynamics simulations, we simulate a caveola-like curved membrane and select a CG bead as the O<sub>2</sub> model. Comparing a flat bilayer and a liposome of 10 nm diameter, composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), allows us to study changes in the O<sub>2</sub> free energy profile. Our findings reveal that curvature has a contrasting effect on the free energy of the outer and inner layers. These findings show the membrane curvature's impact on O<sub>2</sub> partitioning in the membrane and O<sub>2</sub> permeation barriers, paving the way towards our understanding of the role of caveolae curvature in O<sub>2</sub> homeostasis.</p>\",\"PeriodicalId\":7270,\"journal\":{\"name\":\"Advances in experimental medicine and biology\",\"volume\":\"1463 \",\"pages\":\"271-275\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in experimental medicine and biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-67458-7_45\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in experimental medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/978-3-031-67458-7_45","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

氧气悖论 "体现了涉及氧气(O2)的两个对立生物过程之间微妙的相互作用。氧气是有氧代谢不可或缺的物质,可促进线粒体中的氧化磷酸化。然而,过量的氧气会产生对细胞有害的活性物质。因此,保持氧气平衡至关重要,需要在尽量减少潜在危害的同时,优先考虑其益处。先前的研究假设,洞穴(一种富含胆固醇的特殊膜结构,具有弯曲的形态)能调节细胞的氧气水平。它们在吸收和控制线粒体释放氧气方面的作用仍不清楚。为了填补这一空白,我们旨在探索洞穴的结构特征,尤其是膜曲率,如何影响局部的氧气水平。利用粗粒度(CG)分子动力学模拟,我们模拟了一个类似洞穴的弯曲膜,并选择一个 CG 珠作为 O2 模型。通过比较平坦双分子层和由 1-棕榈酰-2-油酰-sn-甘油-3-磷酸胆碱(POPC)组成的直径为 10 nm 的脂质体,我们可以研究 O2 自由能曲线的变化。我们的研究结果表明,曲率对外层和内层的自由能有着截然不同的影响。这些发现显示了膜曲率对膜内氧气分配和氧气渗透障碍的影响,为我们了解洞穴曲率在氧气平衡中的作用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding Oxygen "Buffering" by Caveolae Using Coarse-Grained Molecular Dynamics Simulations.

The "oxygen paradox" embodies the delicate interplay between two opposing biological processes involving oxygen (O2). O2 is indispensable for aerobic metabolism, fuelling oxidative phosphorylation in mitochondria. However, excess O2 can generate reactive species that harm cells. Thus, maintaining O2 balance is paramount, requiring the prioritisation of its benefits while minimising potential harm. Previous research hypothesised that caveolae, specialised cholesterol-rich membrane structures with a curved morphology, regulate cellular O2 levels. Their role in absorbing and controlling O2 release to mitochondria remains unclear. To address this gap, we aim to explore how the structural features of caveolae, particularly membrane curvature, influence local O2 levels. Using coarse-grained (CG) molecular dynamics simulations, we simulate a caveola-like curved membrane and select a CG bead as the O2 model. Comparing a flat bilayer and a liposome of 10 nm diameter, composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), allows us to study changes in the O2 free energy profile. Our findings reveal that curvature has a contrasting effect on the free energy of the outer and inner layers. These findings show the membrane curvature's impact on O2 partitioning in the membrane and O2 permeation barriers, paving the way towards our understanding of the role of caveolae curvature in O2 homeostasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in experimental medicine and biology
Advances in experimental medicine and biology 医学-医学:研究与实验
CiteScore
5.90
自引率
0.00%
发文量
465
审稿时长
2-4 weeks
期刊介绍: Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.
期刊最新文献
Dietary Lipids and Their Metabolism in the Midgut. Insect Lipid Metabolism in the Presence of Symbiotic and Pathogenic Viruses and Bacteria. Amniotic Membrane Transplantation: Clinical Applications in Enhancing Wound Healing and Tissue Regeneration. Wnt/β-catenin Signaling in Central Nervous System Regeneration. Flavonoids as Chemosensitizers in Leukemias.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1