卡维地洛通过阻断ß1-肾上腺素受体,抑制氧化应激、细胞凋亡、自噬、铁蛋白沉积、内质网应激和炎症,从而改善肾小球肾炎。

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Biochemical pharmacology Pub Date : 2024-10-12 DOI:10.1016/j.bcp.2024.116570
Wei-Yu Lin , Yu-Hsuan Cheng , Pei-Yu Liu , Shih-Ping Hsu , San-Chi Lin , Chiang-Ting Chien
{"title":"卡维地洛通过阻断ß1-肾上腺素受体,抑制氧化应激、细胞凋亡、自噬、铁蛋白沉积、内质网应激和炎症,从而改善肾小球肾炎。","authors":"Wei-Yu Lin ,&nbsp;Yu-Hsuan Cheng ,&nbsp;Pei-Yu Liu ,&nbsp;Shih-Ping Hsu ,&nbsp;San-Chi Lin ,&nbsp;Chiang-Ting Chien","doi":"10.1016/j.bcp.2024.116570","DOIUrl":null,"url":null,"abstract":"<div><div>Glomerulonephritis (GN) is one of the main causes of end stage renal disease and requires an effective treatment for inhibiting GN. Renal nerves through efferent (RENA) and afferent (RANA) innervation to glomeruli regulate the glomerular function. We delineated the role of RENA and RANA on anti-Thy1.1-induced GN. Female Wistar rats were divided into Control, Thy1.1 plus anti-Thy1.1, bilaterally renal nerve denervation (DNX) plus anti-Thy1.1, and topical capsaicin to bilateral renal nerves for selective ablation of RANA (DNAX) plus anti-Thy1.1. We examined RANA and RENA response to anti-Thy1.1 and compared the effect of DNX or DNAX on urinary oxidative stress, renal gp91, tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP), apoptosis, autophagy, ferroptosis, antioxidant enzymes, endoplasmic reticulum (ER) stress and inflammation by western blot. Anti-Thy1.1 significantly enhanced RENA, but did not affect RANA. DNX significantly decreased TH and CGRP expression, whereas DNAX only reduced CGRP expression. Anti-Thy1.1 significantly increased glomerulosclerosis injury, urinary protein, electron paramagnetic resonance signals of alpha-(4-pyridyl-N-oxide)-N-<em>tert</em>-butylnitrone adducts, 8-isoprostane and nitrotyrosine levels, NADPH oxidase gp91phox (gp91), macrophage/monocyte (ED-1), GRP-78, Beclin-1/LC3-II, Bax/caspase-3/poly(ADP-ribose) polymerase expression, inflammatory cytokines levels and decreased renal Copper/Zinc superoxide dismutase, Cystine/glutamate transporter (xCT) and Glutathione peroxidase 4 (GPX4) expression vs. Control. The enhanced oxidative parameters or reduced antioxidant defense by anti-Thy1.1 were significantly attenuated by DNX but not DNAX. Additionally, oral ß1-adrenoceptor antagonist-Carvedilol at an early stage reduced anti-Thy1.1 increased proteinuria level and oxidative parameters. Our data suggest that DNX and ß1-adrenoceptor antagonist-Carvedilol efficiently attenuate oxidative stress, inflammation, ER stress, autophagy, ferroptosis and apoptosis in GN.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"230 ","pages":"Article 116570"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carvedilol through ß1-Adrenoceptor blockade ameliorates glomerulonephritis via inhibition of oxidative stress, apoptosis, autophagy, ferroptosis, endoplasmic reticulum stress and inflammation\",\"authors\":\"Wei-Yu Lin ,&nbsp;Yu-Hsuan Cheng ,&nbsp;Pei-Yu Liu ,&nbsp;Shih-Ping Hsu ,&nbsp;San-Chi Lin ,&nbsp;Chiang-Ting Chien\",\"doi\":\"10.1016/j.bcp.2024.116570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Glomerulonephritis (GN) is one of the main causes of end stage renal disease and requires an effective treatment for inhibiting GN. Renal nerves through efferent (RENA) and afferent (RANA) innervation to glomeruli regulate the glomerular function. We delineated the role of RENA and RANA on anti-Thy1.1-induced GN. Female Wistar rats were divided into Control, Thy1.1 plus anti-Thy1.1, bilaterally renal nerve denervation (DNX) plus anti-Thy1.1, and topical capsaicin to bilateral renal nerves for selective ablation of RANA (DNAX) plus anti-Thy1.1. We examined RANA and RENA response to anti-Thy1.1 and compared the effect of DNX or DNAX on urinary oxidative stress, renal gp91, tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP), apoptosis, autophagy, ferroptosis, antioxidant enzymes, endoplasmic reticulum (ER) stress and inflammation by western blot. Anti-Thy1.1 significantly enhanced RENA, but did not affect RANA. DNX significantly decreased TH and CGRP expression, whereas DNAX only reduced CGRP expression. Anti-Thy1.1 significantly increased glomerulosclerosis injury, urinary protein, electron paramagnetic resonance signals of alpha-(4-pyridyl-N-oxide)-N-<em>tert</em>-butylnitrone adducts, 8-isoprostane and nitrotyrosine levels, NADPH oxidase gp91phox (gp91), macrophage/monocyte (ED-1), GRP-78, Beclin-1/LC3-II, Bax/caspase-3/poly(ADP-ribose) polymerase expression, inflammatory cytokines levels and decreased renal Copper/Zinc superoxide dismutase, Cystine/glutamate transporter (xCT) and Glutathione peroxidase 4 (GPX4) expression vs. Control. The enhanced oxidative parameters or reduced antioxidant defense by anti-Thy1.1 were significantly attenuated by DNX but not DNAX. Additionally, oral ß1-adrenoceptor antagonist-Carvedilol at an early stage reduced anti-Thy1.1 increased proteinuria level and oxidative parameters. Our data suggest that DNX and ß1-adrenoceptor antagonist-Carvedilol efficiently attenuate oxidative stress, inflammation, ER stress, autophagy, ferroptosis and apoptosis in GN.</div></div>\",\"PeriodicalId\":8806,\"journal\":{\"name\":\"Biochemical pharmacology\",\"volume\":\"230 \",\"pages\":\"Article 116570\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006295224005707\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295224005707","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

肾小球肾炎(GN)是导致终末期肾病的主要原因之一,需要有效的治疗方法来抑制 GN。肾脏神经通过传出神经(RENA)和传入神经(RANA)支配肾小球,调节肾小球功能。我们研究了 RENA 和 RANA 在抗 Thy1.1 诱导的 GN 中的作用。雌性 Wistar 大鼠被分为对照组、Thy1.1 加抗-Thy1.1 组、双侧肾神经去神经支配组(DNX)加抗-Thy1.1 组和双侧肾神经局部辣椒素选择性消融 RANA 组(DNAX)加抗-Thy1.1 组。我们检测了RANA和RENA对抗Thy1.1的反应,并通过Western印迹比较了DNX或DNAX对尿氧化应激、肾gp91、酪氨酸羟化酶(TH)、降钙素基因相关肽(CGRP)、细胞凋亡、自噬、铁蛋白沉积、抗氧化酶、内质网(ER)应激和炎症的影响。抗Thy1.1能显著增强RENA,但不影响RANA。DNX 能明显降低 TH 和 CGRP 的表达,而 DNAX 只能降低 CGRP 的表达。抗Thy1.GRP-78、Beclin-1/LC3-II、Bax/caspase-3/聚(ADP-核糖)聚合酶的表达、炎症细胞因子水平以及肾脏铜/锌超氧化物歧化酶、胱氨酸/谷氨酸转运体(xCT)和谷胱甘肽过氧化物酶 4(GPX4)的表达与对照组相比均有所下降。对照组。抗-Thy1.1增强的氧化参数或降低的抗氧化防御能力被DNX而非DNAX显著减弱。此外,早期口服ß1-肾上腺素受体拮抗剂-卡维地洛(Carvedilol)可降低抗-Thy1.1导致的蛋白尿水平升高和氧化参数升高。我们的数据表明,DNX和ß1-肾上腺素受体拮抗剂-卡维地洛能有效减轻GN中的氧化应激、炎症、ER应激、自噬、铁变态反应和细胞凋亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carvedilol through ß1-Adrenoceptor blockade ameliorates glomerulonephritis via inhibition of oxidative stress, apoptosis, autophagy, ferroptosis, endoplasmic reticulum stress and inflammation
Glomerulonephritis (GN) is one of the main causes of end stage renal disease and requires an effective treatment for inhibiting GN. Renal nerves through efferent (RENA) and afferent (RANA) innervation to glomeruli regulate the glomerular function. We delineated the role of RENA and RANA on anti-Thy1.1-induced GN. Female Wistar rats were divided into Control, Thy1.1 plus anti-Thy1.1, bilaterally renal nerve denervation (DNX) plus anti-Thy1.1, and topical capsaicin to bilateral renal nerves for selective ablation of RANA (DNAX) plus anti-Thy1.1. We examined RANA and RENA response to anti-Thy1.1 and compared the effect of DNX or DNAX on urinary oxidative stress, renal gp91, tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP), apoptosis, autophagy, ferroptosis, antioxidant enzymes, endoplasmic reticulum (ER) stress and inflammation by western blot. Anti-Thy1.1 significantly enhanced RENA, but did not affect RANA. DNX significantly decreased TH and CGRP expression, whereas DNAX only reduced CGRP expression. Anti-Thy1.1 significantly increased glomerulosclerosis injury, urinary protein, electron paramagnetic resonance signals of alpha-(4-pyridyl-N-oxide)-N-tert-butylnitrone adducts, 8-isoprostane and nitrotyrosine levels, NADPH oxidase gp91phox (gp91), macrophage/monocyte (ED-1), GRP-78, Beclin-1/LC3-II, Bax/caspase-3/poly(ADP-ribose) polymerase expression, inflammatory cytokines levels and decreased renal Copper/Zinc superoxide dismutase, Cystine/glutamate transporter (xCT) and Glutathione peroxidase 4 (GPX4) expression vs. Control. The enhanced oxidative parameters or reduced antioxidant defense by anti-Thy1.1 were significantly attenuated by DNX but not DNAX. Additionally, oral ß1-adrenoceptor antagonist-Carvedilol at an early stage reduced anti-Thy1.1 increased proteinuria level and oxidative parameters. Our data suggest that DNX and ß1-adrenoceptor antagonist-Carvedilol efficiently attenuate oxidative stress, inflammation, ER stress, autophagy, ferroptosis and apoptosis in GN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical pharmacology
Biochemical pharmacology 医学-药学
CiteScore
10.30
自引率
1.70%
发文量
420
审稿时长
17 days
期刊介绍: Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics. The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process. All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review. While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.
期刊最新文献
An Island of Reil excitation: Mapping glutamatergic (vGlut1+ and vGlut2+) connections in the medial insular cortex. Exploring heat shock proteins as therapeutic targets for Parkinson's disease. Role of Relaxin Signaling in Cancer: A Review 3,4,5-trimethoxycinnamic acid methyl ester isolated from Polygala tenuifolia enhances hippocampal LTP through PKA and calcium-permeable AMPA receptor C1QTNF Related protein 8 (CTRP8) is a marker of myeloid derived innate immune cell populations in the human breast cancer microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1