Mia Jessica O'Shea, Roberta Goncalves Anversa, Sarah Sulaiman Ch'ng, Erin Jane Campbell, Leigh Clasina Walker, Zane Bruce Andrews, Andrew John Lawrence, Robyn Mary Brown
{"title":"An Island of Reil excitation: Mapping glutamatergic (vGlut1+ and vGlut2+) connections in the medial insular cortex.","authors":"Mia Jessica O'Shea, Roberta Goncalves Anversa, Sarah Sulaiman Ch'ng, Erin Jane Campbell, Leigh Clasina Walker, Zane Bruce Andrews, Andrew John Lawrence, Robyn Mary Brown","doi":"10.1016/j.bcp.2024.116637","DOIUrl":null,"url":null,"abstract":"<p><p>The insular cortex is a multifunctional and richly connected region of the cerebral cortex, critical in the neural integration of external stimuli and internal signals. Well-served for this role by a large network of afferent and efferent connections, the mouse insula can be simplified into an anterior, medial and posterior portion. Here we focus on the medial subregion, a once over-looked area that has gained recent attention for its involvement in an array of behaviours. Although the connections of medial insular cortex neurons have been previously identified, their precise glutamatergic phenotype remains undefined (typically defined by the presence of the subtype of vesicular glutamate transporters). Hence, we combined Cre knock-in mouse lines and adeno-associated viral tracing to distinguish between the expression of the two major vesicular glutamate transporters, type 1 (vGlut1) and 2 (vGlut2), in the subregion's neuronal inputs and outputs. Our results determined that the medial insula has extensive glutamatergic efferents expressing both vGlut1 and vGlut2 throughout the neuraxis. In contrast, a more conservative number of glutamatergic inputs were observed, with exclusively vGlut2+ projections received from hypothalamic and thalamic regions. Taken together, we demonstrate that vGlut1- and vGlut2-expressing networks of this insular subdivision have distinct connectivity patterns, including a greater abundance of vGlut1+ fibres innervating hypothalamic regions and the extended amygdala. These findings provide insight into the distinct chemo-architecture of this region, which may facilitate further investigation into the role of the medial insula in complex behaviour.</p>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":" ","pages":"116637"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bcp.2024.116637","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The insular cortex is a multifunctional and richly connected region of the cerebral cortex, critical in the neural integration of external stimuli and internal signals. Well-served for this role by a large network of afferent and efferent connections, the mouse insula can be simplified into an anterior, medial and posterior portion. Here we focus on the medial subregion, a once over-looked area that has gained recent attention for its involvement in an array of behaviours. Although the connections of medial insular cortex neurons have been previously identified, their precise glutamatergic phenotype remains undefined (typically defined by the presence of the subtype of vesicular glutamate transporters). Hence, we combined Cre knock-in mouse lines and adeno-associated viral tracing to distinguish between the expression of the two major vesicular glutamate transporters, type 1 (vGlut1) and 2 (vGlut2), in the subregion's neuronal inputs and outputs. Our results determined that the medial insula has extensive glutamatergic efferents expressing both vGlut1 and vGlut2 throughout the neuraxis. In contrast, a more conservative number of glutamatergic inputs were observed, with exclusively vGlut2+ projections received from hypothalamic and thalamic regions. Taken together, we demonstrate that vGlut1- and vGlut2-expressing networks of this insular subdivision have distinct connectivity patterns, including a greater abundance of vGlut1+ fibres innervating hypothalamic regions and the extended amygdala. These findings provide insight into the distinct chemo-architecture of this region, which may facilitate further investigation into the role of the medial insula in complex behaviour.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.