Mariem Trabelsi, Hamida Romdhane, Lotfi Ben Salem, Dorra Ben-Sellem
{"title":"用于 18FDG-PET/CT 成像中 TNM 肺癌 T 分类的高级人工智能框架。","authors":"Mariem Trabelsi, Hamida Romdhane, Lotfi Ben Salem, Dorra Ben-Sellem","doi":"10.1088/2057-1976/ad81ff","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of artificial intelligence (AI) into lung cancer management offers immense potential to revolutionize diagnostic and treatment strategies. The aim is to develop a resilient AI framework capable of two critical tasks: firstly, achieving accurate and automated segmentation of lung tumors and secondly, facilitating the T classification of lung cancer according to the ninth edition of TNM staging 2024 based on PET/CT imaging. This study presents a robust AI framework for the automated segmentation of lung tumors and T classification of lung cancer using PET/CT imaging. The database includes axial DICOM CT and<sup>18</sup>FDG-PET/CT images. A modified ResNet-50 model was employed for segmentation, achieving high precision and specificity. Reconstructed 3D models of segmented slices enhance tumor boundary visualization, which is essential for treatment planning. The Pulmonary Toolkit facilitated lobe segmentation, providing critical diagnostic insights. Additionally, the segmented images were used as input for the T classification using a CNN ResNet-50 model. Our classification model demonstrated excellent performance, particularly for T1a, T2a, T2b, T3 and T4 tumors, with high precision, F1 scores, and specificity. The T stage is particularly relevant in lung cancer as it determines treatment approaches (surgery, chemotherapy and radiation therapy or supportive care) and prognosis assessment. In fact, for Tis-T2, each increase of one centimeter in tumor size results in a worse prognosis. For locally advanced tumors (T3-T4) and regardless of size, the prognosis is poorer. This AI framework marks a significant advancement in the automation of lung cancer diagnosis and staging, promising improved patient outcomes.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":"10 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced artificial intelligence framework for T classification of TNM lung cancer in<sup>18</sup>FDG-PET/CT imaging.\",\"authors\":\"Mariem Trabelsi, Hamida Romdhane, Lotfi Ben Salem, Dorra Ben-Sellem\",\"doi\":\"10.1088/2057-1976/ad81ff\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The integration of artificial intelligence (AI) into lung cancer management offers immense potential to revolutionize diagnostic and treatment strategies. The aim is to develop a resilient AI framework capable of two critical tasks: firstly, achieving accurate and automated segmentation of lung tumors and secondly, facilitating the T classification of lung cancer according to the ninth edition of TNM staging 2024 based on PET/CT imaging. This study presents a robust AI framework for the automated segmentation of lung tumors and T classification of lung cancer using PET/CT imaging. The database includes axial DICOM CT and<sup>18</sup>FDG-PET/CT images. A modified ResNet-50 model was employed for segmentation, achieving high precision and specificity. Reconstructed 3D models of segmented slices enhance tumor boundary visualization, which is essential for treatment planning. The Pulmonary Toolkit facilitated lobe segmentation, providing critical diagnostic insights. Additionally, the segmented images were used as input for the T classification using a CNN ResNet-50 model. Our classification model demonstrated excellent performance, particularly for T1a, T2a, T2b, T3 and T4 tumors, with high precision, F1 scores, and specificity. The T stage is particularly relevant in lung cancer as it determines treatment approaches (surgery, chemotherapy and radiation therapy or supportive care) and prognosis assessment. In fact, for Tis-T2, each increase of one centimeter in tumor size results in a worse prognosis. For locally advanced tumors (T3-T4) and regardless of size, the prognosis is poorer. This AI framework marks a significant advancement in the automation of lung cancer diagnosis and staging, promising improved patient outcomes.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\"10 6\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad81ff\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad81ff","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Advanced artificial intelligence framework for T classification of TNM lung cancer in18FDG-PET/CT imaging.
The integration of artificial intelligence (AI) into lung cancer management offers immense potential to revolutionize diagnostic and treatment strategies. The aim is to develop a resilient AI framework capable of two critical tasks: firstly, achieving accurate and automated segmentation of lung tumors and secondly, facilitating the T classification of lung cancer according to the ninth edition of TNM staging 2024 based on PET/CT imaging. This study presents a robust AI framework for the automated segmentation of lung tumors and T classification of lung cancer using PET/CT imaging. The database includes axial DICOM CT and18FDG-PET/CT images. A modified ResNet-50 model was employed for segmentation, achieving high precision and specificity. Reconstructed 3D models of segmented slices enhance tumor boundary visualization, which is essential for treatment planning. The Pulmonary Toolkit facilitated lobe segmentation, providing critical diagnostic insights. Additionally, the segmented images were used as input for the T classification using a CNN ResNet-50 model. Our classification model demonstrated excellent performance, particularly for T1a, T2a, T2b, T3 and T4 tumors, with high precision, F1 scores, and specificity. The T stage is particularly relevant in lung cancer as it determines treatment approaches (surgery, chemotherapy and radiation therapy or supportive care) and prognosis assessment. In fact, for Tis-T2, each increase of one centimeter in tumor size results in a worse prognosis. For locally advanced tumors (T3-T4) and regardless of size, the prognosis is poorer. This AI framework marks a significant advancement in the automation of lung cancer diagnosis and staging, promising improved patient outcomes.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.