Jiwei Jiang, Kun Zhao, Wenyi Li, Peiyang Zheng, Shirui Jiang, Qiwei Ren, Yunyun Duan, Huiying Yu, Xiaopeng Kang, Junjie Li, Ke Hu, Tianlin Jiang, Min Zhao, Linlin Wang, Shiyi Yang, Huiying Zhang, Yaou Liu, Anxin Wang, Yong Liu, Jun Xu
{"title":"多组学揭示了阿尔茨海默病整个病程中将宏观结构协方差网络功能障碍与神经精神症状联系起来的生物机制。","authors":"Jiwei Jiang, Kun Zhao, Wenyi Li, Peiyang Zheng, Shirui Jiang, Qiwei Ren, Yunyun Duan, Huiying Yu, Xiaopeng Kang, Junjie Li, Ke Hu, Tianlin Jiang, Min Zhao, Linlin Wang, Shiyi Yang, Huiying Zhang, Yaou Liu, Anxin Wang, Yong Liu, Jun Xu","doi":"10.1016/j.biopsych.2024.08.027","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The highly heterogeneity of neuropsychiatric symptoms (NPSs) hinder further exploration of their role in neurobiological mechanisms and Alzheimer's disease (AD). We aimed to delineate NPS patterns based on brain macroscale connectomics to understand the biological mechanisms of NPSs on the AD continuum.</p><p><strong>Methods: </strong>We constructed Regional Radiomics Similarity Networks (R2SN) for 550 participants (AD with NPSs [AD-NPS, n=376], AD without NPSs [AD-nNPS, n=111], and normal controls [n=63]) from CIBL study. We identified R2SN connections associated with NPSs, and then cluster distinct subtypes of AD-NPS. An independent dataset (n=189) and internal validation were performed to assess the robustness of the NPS subtypes. Subsequent multiomics analysis were performed to assess the distinct clinical phenotype and biological mechanisms in each NPS subtype.</p><p><strong>Results: </strong>AD-NPS patients were clustered into severe (n=187), moderate (n=87), and mild NPS (n=102) subtypes, each exhibiting distinct brain network dysfunction patterns. A high level of consistency in clustering NPS was internally and externally validated. Severe and moderate NPSs showed significant cognitive impairment, increased plasma p-Tau<sub>181</sub> levels, extensive decreased brain volume and cortical thickness, and accelerated cognitive decline. Gene set enrichment analysis (GSEA) revealed enrichment of differentially expressed genes in ion transport and synaptic transmission with variations for each NPS subtype. Genome-wide association studies (GWAS) analysis defined the specific gene loci for each subtype of AD-NPS (i.e, logical memory), aligning with clinical manifestations and progression patterns.</p><p><strong>Conclusions: </strong>This study identified and validated three distinct NPS subtypes, underscoring the role of NPSs in neurobiological mechanisms and progression of the AD continuum.</p>","PeriodicalId":8918,"journal":{"name":"Biological Psychiatry","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiomics Reveals Biological Mechanisms Linking Macroscale Structural Covariance Network Dysfunction With Neuropsychiatric Symptoms Across the Alzheimer's Disease Continuum.\",\"authors\":\"Jiwei Jiang, Kun Zhao, Wenyi Li, Peiyang Zheng, Shirui Jiang, Qiwei Ren, Yunyun Duan, Huiying Yu, Xiaopeng Kang, Junjie Li, Ke Hu, Tianlin Jiang, Min Zhao, Linlin Wang, Shiyi Yang, Huiying Zhang, Yaou Liu, Anxin Wang, Yong Liu, Jun Xu\",\"doi\":\"10.1016/j.biopsych.2024.08.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The highly heterogeneity of neuropsychiatric symptoms (NPSs) hinder further exploration of their role in neurobiological mechanisms and Alzheimer's disease (AD). We aimed to delineate NPS patterns based on brain macroscale connectomics to understand the biological mechanisms of NPSs on the AD continuum.</p><p><strong>Methods: </strong>We constructed Regional Radiomics Similarity Networks (R2SN) for 550 participants (AD with NPSs [AD-NPS, n=376], AD without NPSs [AD-nNPS, n=111], and normal controls [n=63]) from CIBL study. We identified R2SN connections associated with NPSs, and then cluster distinct subtypes of AD-NPS. An independent dataset (n=189) and internal validation were performed to assess the robustness of the NPS subtypes. Subsequent multiomics analysis were performed to assess the distinct clinical phenotype and biological mechanisms in each NPS subtype.</p><p><strong>Results: </strong>AD-NPS patients were clustered into severe (n=187), moderate (n=87), and mild NPS (n=102) subtypes, each exhibiting distinct brain network dysfunction patterns. A high level of consistency in clustering NPS was internally and externally validated. Severe and moderate NPSs showed significant cognitive impairment, increased plasma p-Tau<sub>181</sub> levels, extensive decreased brain volume and cortical thickness, and accelerated cognitive decline. Gene set enrichment analysis (GSEA) revealed enrichment of differentially expressed genes in ion transport and synaptic transmission with variations for each NPS subtype. Genome-wide association studies (GWAS) analysis defined the specific gene loci for each subtype of AD-NPS (i.e, logical memory), aligning with clinical manifestations and progression patterns.</p><p><strong>Conclusions: </strong>This study identified and validated three distinct NPS subtypes, underscoring the role of NPSs in neurobiological mechanisms and progression of the AD continuum.</p>\",\"PeriodicalId\":8918,\"journal\":{\"name\":\"Biological Psychiatry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biopsych.2024.08.027\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.biopsych.2024.08.027","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Multiomics Reveals Biological Mechanisms Linking Macroscale Structural Covariance Network Dysfunction With Neuropsychiatric Symptoms Across the Alzheimer's Disease Continuum.
Background: The highly heterogeneity of neuropsychiatric symptoms (NPSs) hinder further exploration of their role in neurobiological mechanisms and Alzheimer's disease (AD). We aimed to delineate NPS patterns based on brain macroscale connectomics to understand the biological mechanisms of NPSs on the AD continuum.
Methods: We constructed Regional Radiomics Similarity Networks (R2SN) for 550 participants (AD with NPSs [AD-NPS, n=376], AD without NPSs [AD-nNPS, n=111], and normal controls [n=63]) from CIBL study. We identified R2SN connections associated with NPSs, and then cluster distinct subtypes of AD-NPS. An independent dataset (n=189) and internal validation were performed to assess the robustness of the NPS subtypes. Subsequent multiomics analysis were performed to assess the distinct clinical phenotype and biological mechanisms in each NPS subtype.
Results: AD-NPS patients were clustered into severe (n=187), moderate (n=87), and mild NPS (n=102) subtypes, each exhibiting distinct brain network dysfunction patterns. A high level of consistency in clustering NPS was internally and externally validated. Severe and moderate NPSs showed significant cognitive impairment, increased plasma p-Tau181 levels, extensive decreased brain volume and cortical thickness, and accelerated cognitive decline. Gene set enrichment analysis (GSEA) revealed enrichment of differentially expressed genes in ion transport and synaptic transmission with variations for each NPS subtype. Genome-wide association studies (GWAS) analysis defined the specific gene loci for each subtype of AD-NPS (i.e, logical memory), aligning with clinical manifestations and progression patterns.
Conclusions: This study identified and validated three distinct NPS subtypes, underscoring the role of NPSs in neurobiological mechanisms and progression of the AD continuum.
期刊介绍:
Biological Psychiatry is an official journal of the Society of Biological Psychiatry and was established in 1969. It is the first journal in the Biological Psychiatry family, which also includes Biological Psychiatry: Cognitive Neuroscience and Neuroimaging and Biological Psychiatry: Global Open Science. The Society's main goal is to promote excellence in scientific research and education in the fields related to the nature, causes, mechanisms, and treatments of disorders pertaining to thought, emotion, and behavior. To fulfill this mission, Biological Psychiatry publishes peer-reviewed, rapid-publication articles that present new findings from original basic, translational, and clinical mechanistic research, ultimately advancing our understanding of psychiatric disorders and their treatment. The journal also encourages the submission of reviews and commentaries on current research and topics of interest.