Lingling Yang, Xiaohan Zhou, Tian Heng, Yinghai Zhu, Lihuan Gong, Na Liu, Xiuqing Yao, Yaxi Luo
{"title":"FNDC5/Irisin可通过铁蛋白沉积减轻高血糖诱导的HT22细胞神经毒性。","authors":"Lingling Yang, Xiaohan Zhou, Tian Heng, Yinghai Zhu, Lihuan Gong, Na Liu, Xiuqing Yao, Yaxi Luo","doi":"10.5582/bst.2024.01249","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes-induced neuropathy represents a major etiology of dementia, highlighting an urgent need for the development of effective therapeutic interventions. In this study, we explored the role of fibronectin type III domain containing 5 (FNDC5)/Irisin in mitigating hyperglycemia-induced neurotoxicity in HT22 cells and investigated the underlying mechanisms. Our findings reveal that high glucose conditions are neurotoxic, leading to reduced viability of HT22 cells and increased apoptosis. Furthermore, the elevated expression of the intracellular ferroptosis marker Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4), along with increased levels of ferrous ions and malondialdehyde (MDA), suggests that high glucose conditions may induce ferroptosis in HT22 cells. FNDC5/Irisin treatment effectively mitigates high glucose-induced neurotoxicity and ferroptosis in HT22 cells. Mechanistically, FNDC5/Irisin enhances cellular antioxidant capacity, regulates ACSL4 expression, and improves intracellular redox status, thereby inhibiting ferroptosis and increasing HT22 cell survival under high-glucose conditions. These results highlight the neuroprotective potential of FNDC5/Irisin in high glucose environments, offering a promising avenue for developing treatments for diabetes-related neurodegenerative diseases.</p>","PeriodicalId":8957,"journal":{"name":"Bioscience trends","volume":" ","pages":"465-475"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FNDC5/Irisin mitigates high glucose-induced neurotoxicity in HT22 cell via ferroptosis.\",\"authors\":\"Lingling Yang, Xiaohan Zhou, Tian Heng, Yinghai Zhu, Lihuan Gong, Na Liu, Xiuqing Yao, Yaxi Luo\",\"doi\":\"10.5582/bst.2024.01249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes-induced neuropathy represents a major etiology of dementia, highlighting an urgent need for the development of effective therapeutic interventions. In this study, we explored the role of fibronectin type III domain containing 5 (FNDC5)/Irisin in mitigating hyperglycemia-induced neurotoxicity in HT22 cells and investigated the underlying mechanisms. Our findings reveal that high glucose conditions are neurotoxic, leading to reduced viability of HT22 cells and increased apoptosis. Furthermore, the elevated expression of the intracellular ferroptosis marker Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4), along with increased levels of ferrous ions and malondialdehyde (MDA), suggests that high glucose conditions may induce ferroptosis in HT22 cells. FNDC5/Irisin treatment effectively mitigates high glucose-induced neurotoxicity and ferroptosis in HT22 cells. Mechanistically, FNDC5/Irisin enhances cellular antioxidant capacity, regulates ACSL4 expression, and improves intracellular redox status, thereby inhibiting ferroptosis and increasing HT22 cell survival under high-glucose conditions. These results highlight the neuroprotective potential of FNDC5/Irisin in high glucose environments, offering a promising avenue for developing treatments for diabetes-related neurodegenerative diseases.</p>\",\"PeriodicalId\":8957,\"journal\":{\"name\":\"Bioscience trends\",\"volume\":\" \",\"pages\":\"465-475\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience trends\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.5582/bst.2024.01249\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience trends","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5582/bst.2024.01249","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
FNDC5/Irisin mitigates high glucose-induced neurotoxicity in HT22 cell via ferroptosis.
Diabetes-induced neuropathy represents a major etiology of dementia, highlighting an urgent need for the development of effective therapeutic interventions. In this study, we explored the role of fibronectin type III domain containing 5 (FNDC5)/Irisin in mitigating hyperglycemia-induced neurotoxicity in HT22 cells and investigated the underlying mechanisms. Our findings reveal that high glucose conditions are neurotoxic, leading to reduced viability of HT22 cells and increased apoptosis. Furthermore, the elevated expression of the intracellular ferroptosis marker Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4), along with increased levels of ferrous ions and malondialdehyde (MDA), suggests that high glucose conditions may induce ferroptosis in HT22 cells. FNDC5/Irisin treatment effectively mitigates high glucose-induced neurotoxicity and ferroptosis in HT22 cells. Mechanistically, FNDC5/Irisin enhances cellular antioxidant capacity, regulates ACSL4 expression, and improves intracellular redox status, thereby inhibiting ferroptosis and increasing HT22 cell survival under high-glucose conditions. These results highlight the neuroprotective potential of FNDC5/Irisin in high glucose environments, offering a promising avenue for developing treatments for diabetes-related neurodegenerative diseases.
期刊介绍:
BioScience Trends (Print ISSN 1881-7815, Online ISSN 1881-7823) is an international peer-reviewed journal. BioScience Trends devotes to publishing the latest and most exciting advances in scientific research. Articles cover fields of life science such as biochemistry, molecular biology, clinical research, public health, medical care system, and social science in order to encourage cooperation and exchange among scientists and clinical researchers.