{"title":"揭示多动症遗传发病机制的脑组织转录和 DNA 甲基化多组学研究。","authors":"Jingkai Wang, Qiu-Wen Zhu, Jia-Hao Mai, Shun Zhang, Yuqing Wang, Jiatong Liang, Ji-Yuan Zhou","doi":"10.1093/bib/bbae502","DOIUrl":null,"url":null,"abstract":"<p><p>Attention-deficit/hyperactivity disorder (ADHD) is a chronic psychiatric disease that often affects a patient's whole life. Research has found that genetics plays an important role in the development of ADHD. However, there is still a lack of knowledge about the tissue-specific causal effects of biological processes beyond gene expression, such as alternative splicing (AS) and DNA methylation (DNAm), on ADHD. In this paper, a multi-omics study was conducted to investigate the causal effects of the transcription and the DNAm on ADHD, by integrating ADHD genome-wide association data with quantitative trait loci data of gene expression, AS, and DNAm across 14 different brain tissues. The causal effects were estimated using four different two-sample Mendelian randomization methods. Finally, we also prioritized the expression of 866 genes showing significant causal effects, including COMMD5, ENSG00000271904, HYAL3, etc., within at least one brain tissue. We prioritized 966 unique genes that have statistically significant causal AS events, within at least one of the 14 different brain tissues. These genes include PPP1R16A, GGT7, TREM2, etc. Furthermore, through mediation analysis, 106 regulatory pathways were inferred where DNAm influences ADHD through gene expression or AS processes. Our research findings provide guidance for future experimental studies on the molecular mechanisms of ADHD development, and also put forward valuable knowledge for the prevention, diagnosis, and treatment of ADHD.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479714/pdf/","citationCount":"0","resultStr":"{\"title\":\"A multi-omics study of brain tissue transcription and DNA methylation revealing the genetic pathogenesis of ADHD.\",\"authors\":\"Jingkai Wang, Qiu-Wen Zhu, Jia-Hao Mai, Shun Zhang, Yuqing Wang, Jiatong Liang, Ji-Yuan Zhou\",\"doi\":\"10.1093/bib/bbae502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Attention-deficit/hyperactivity disorder (ADHD) is a chronic psychiatric disease that often affects a patient's whole life. Research has found that genetics plays an important role in the development of ADHD. However, there is still a lack of knowledge about the tissue-specific causal effects of biological processes beyond gene expression, such as alternative splicing (AS) and DNA methylation (DNAm), on ADHD. In this paper, a multi-omics study was conducted to investigate the causal effects of the transcription and the DNAm on ADHD, by integrating ADHD genome-wide association data with quantitative trait loci data of gene expression, AS, and DNAm across 14 different brain tissues. The causal effects were estimated using four different two-sample Mendelian randomization methods. Finally, we also prioritized the expression of 866 genes showing significant causal effects, including COMMD5, ENSG00000271904, HYAL3, etc., within at least one brain tissue. We prioritized 966 unique genes that have statistically significant causal AS events, within at least one of the 14 different brain tissues. These genes include PPP1R16A, GGT7, TREM2, etc. Furthermore, through mediation analysis, 106 regulatory pathways were inferred where DNAm influences ADHD through gene expression or AS processes. Our research findings provide guidance for future experimental studies on the molecular mechanisms of ADHD development, and also put forward valuable knowledge for the prevention, diagnosis, and treatment of ADHD.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479714/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae502\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae502","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
注意力缺陷/多动症(ADHD)是一种慢性精神疾病,通常会影响患者的一生。研究发现,遗传在多动症的发病过程中起着重要作用。然而,对于基因表达以外的生物过程(如替代剪接(AS)和DNA甲基化(DNAm))对ADHD的组织特异性因果效应仍缺乏了解。本文开展了一项多组学研究,通过整合14种不同脑组织的ADHD全基因组关联数据与基因表达、AS和DNAm的定量性状位点数据,研究转录和DNAm对ADHD的因果效应。使用四种不同的双样本孟德尔随机化方法估算了因果效应。最后,我们还对至少一个脑组织中显示出显著因果效应的 866 个基因的表达进行了优先排序,包括 COMMD5、ENSG00000271904、HYAL3 等。我们对 14 种不同脑组织中至少一种组织内具有统计学意义的因果关系 AS 事件的 966 个独特基因进行了优先排序。这些基因包括 PPP1R16A、GGT7、TREM2 等。此外,通过中介分析,我们还推断出 106 条 DNAm 通过基因表达或 AS 过程影响多动症的调控途径。我们的研究成果为今后开展多动症发病分子机制的实验研究提供了指导,也为多动症的预防、诊断和治疗提供了有价值的知识。
A multi-omics study of brain tissue transcription and DNA methylation revealing the genetic pathogenesis of ADHD.
Attention-deficit/hyperactivity disorder (ADHD) is a chronic psychiatric disease that often affects a patient's whole life. Research has found that genetics plays an important role in the development of ADHD. However, there is still a lack of knowledge about the tissue-specific causal effects of biological processes beyond gene expression, such as alternative splicing (AS) and DNA methylation (DNAm), on ADHD. In this paper, a multi-omics study was conducted to investigate the causal effects of the transcription and the DNAm on ADHD, by integrating ADHD genome-wide association data with quantitative trait loci data of gene expression, AS, and DNAm across 14 different brain tissues. The causal effects were estimated using four different two-sample Mendelian randomization methods. Finally, we also prioritized the expression of 866 genes showing significant causal effects, including COMMD5, ENSG00000271904, HYAL3, etc., within at least one brain tissue. We prioritized 966 unique genes that have statistically significant causal AS events, within at least one of the 14 different brain tissues. These genes include PPP1R16A, GGT7, TREM2, etc. Furthermore, through mediation analysis, 106 regulatory pathways were inferred where DNAm influences ADHD through gene expression or AS processes. Our research findings provide guidance for future experimental studies on the molecular mechanisms of ADHD development, and also put forward valuable knowledge for the prevention, diagnosis, and treatment of ADHD.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.