{"title":"光照和营养限制下浮游生态系统中的真菌寄生虫传播","authors":"Yawen Yan, Juping Ji, Hao Wang","doi":"10.1007/s11538-024-01365-2","DOIUrl":null,"url":null,"abstract":"<p><p>The two main components of the planktonic ecosystem are phytoplankton and zooplankton. Fungal parasites can infect zooplankton and spread between them. In this paper, we construct a dynamic model to describe the spread of fungal parasites among zooplankton. Basic reproduction number for fungal parasite transmission among zooplankton are rigorously derived. The dynamics of this system are analyzed including dissipativity and equilibria. We further explore the effects of ecological factors on population dynamics and the relationship between fungal parasite transmission and phytoplankton blooms. Interestingly, our theoretical and numerical results indicate that a low-light or oligotrophic aquatic environment is helpful in mitigating the transmission of fungal parasites. We also show that fungal parasites on zooplankton can increase phytoplankton biomass and induce blooms.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fungal Parasite Transmission in a Planktonic Ecosystem Under Light and Nutrient Constraints.\",\"authors\":\"Yawen Yan, Juping Ji, Hao Wang\",\"doi\":\"10.1007/s11538-024-01365-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The two main components of the planktonic ecosystem are phytoplankton and zooplankton. Fungal parasites can infect zooplankton and spread between them. In this paper, we construct a dynamic model to describe the spread of fungal parasites among zooplankton. Basic reproduction number for fungal parasite transmission among zooplankton are rigorously derived. The dynamics of this system are analyzed including dissipativity and equilibria. We further explore the effects of ecological factors on population dynamics and the relationship between fungal parasite transmission and phytoplankton blooms. Interestingly, our theoretical and numerical results indicate that a low-light or oligotrophic aquatic environment is helpful in mitigating the transmission of fungal parasites. We also show that fungal parasites on zooplankton can increase phytoplankton biomass and induce blooms.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11538-024-01365-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01365-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Fungal Parasite Transmission in a Planktonic Ecosystem Under Light and Nutrient Constraints.
The two main components of the planktonic ecosystem are phytoplankton and zooplankton. Fungal parasites can infect zooplankton and spread between them. In this paper, we construct a dynamic model to describe the spread of fungal parasites among zooplankton. Basic reproduction number for fungal parasite transmission among zooplankton are rigorously derived. The dynamics of this system are analyzed including dissipativity and equilibria. We further explore the effects of ecological factors on population dynamics and the relationship between fungal parasite transmission and phytoplankton blooms. Interestingly, our theoretical and numerical results indicate that a low-light or oligotrophic aquatic environment is helpful in mitigating the transmission of fungal parasites. We also show that fungal parasites on zooplankton can increase phytoplankton biomass and induce blooms.