Zeynep Eroglu, Timothy Synold, Behnam Badie, An Liu, Arnab Chowdhury, Julie Kilpatrick, Suzette Blanchard, Jana Portnow
{"title":"一项脑内微透析研究,旨在确定艾瑞布林在转移性或原发性脑肿瘤患者中的神经药代动力学。","authors":"Zeynep Eroglu, Timothy Synold, Behnam Badie, An Liu, Arnab Chowdhury, Julie Kilpatrick, Suzette Blanchard, Jana Portnow","doi":"10.1007/s00280-024-04711-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Eribulin is an inhibitor of microtubule dynamics. It is not as highly protein bound as the taxanes and is less vulnerable to extrusion by P-glycoprotein in the blood-brain barrier (BBB). These features predict that eribulin could play an active role in managing brain tumors. Indeed, the small amount of published clinical data indicates eribulin may have some efficacy against breast cancer brain metastases. To better understand the potential of eribulin for treating brain tumors, we performed an intracerebral microdialysis study to determine the neuropharmacokinetics of eribulin in cancer patients undergoing tumor resection.</p><p><strong>Methods: </strong>After tumor removal, two microdialysis catheters were inserted into peritumoral brain tissue. Approximately 24 h after surgery, a single dose of eribulin 1.4 mg/m<sup>2</sup> was administered intravenously. Dialysate samples were collected continuously for 72 h, with plasma samples collected in parallel. Eribulin concentrations were analyzed by tandem mass spectrometry.</p><p><strong>Results: </strong>Dialysate samples from 12 intracerebral microdialysis catheters placed in 7 study participants were included in the analysis. A statistically significant difference was observed between eribulin concentrations in brain tissue where BBB was disrupted versus intact, with a difference in mean maximum concentrations on log<sub>2</sub> scale of 3.37 (std err = 0.59, p-value = 0.005). Nonetheless, overall brain to plasma ratios of eribulin only ranged from 0.13 to 1.99%.</p><p><strong>Conclusion: </strong>Although we could detect higher concentrations of eribulin in brain tissue where BBB was disrupted, intracerebral eribulin levels were not sufficient to predict eribulin would have consistent clinically meaningful activity against tumors in the brain.</p><p><strong>Clinicaltrials: </strong></p><p><strong>Gov identifier: </strong>NCT02338037 (January 9, 2015).</p>","PeriodicalId":9556,"journal":{"name":"Cancer Chemotherapy and Pharmacology","volume":" ","pages":"807-813"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573798/pdf/","citationCount":"0","resultStr":"{\"title\":\"An intracerebral microdialysis study to determine the neuropharmacokinetics of eribulin in patients with metastatic or primary brain tumors.\",\"authors\":\"Zeynep Eroglu, Timothy Synold, Behnam Badie, An Liu, Arnab Chowdhury, Julie Kilpatrick, Suzette Blanchard, Jana Portnow\",\"doi\":\"10.1007/s00280-024-04711-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Eribulin is an inhibitor of microtubule dynamics. It is not as highly protein bound as the taxanes and is less vulnerable to extrusion by P-glycoprotein in the blood-brain barrier (BBB). These features predict that eribulin could play an active role in managing brain tumors. Indeed, the small amount of published clinical data indicates eribulin may have some efficacy against breast cancer brain metastases. To better understand the potential of eribulin for treating brain tumors, we performed an intracerebral microdialysis study to determine the neuropharmacokinetics of eribulin in cancer patients undergoing tumor resection.</p><p><strong>Methods: </strong>After tumor removal, two microdialysis catheters were inserted into peritumoral brain tissue. Approximately 24 h after surgery, a single dose of eribulin 1.4 mg/m<sup>2</sup> was administered intravenously. Dialysate samples were collected continuously for 72 h, with plasma samples collected in parallel. Eribulin concentrations were analyzed by tandem mass spectrometry.</p><p><strong>Results: </strong>Dialysate samples from 12 intracerebral microdialysis catheters placed in 7 study participants were included in the analysis. A statistically significant difference was observed between eribulin concentrations in brain tissue where BBB was disrupted versus intact, with a difference in mean maximum concentrations on log<sub>2</sub> scale of 3.37 (std err = 0.59, p-value = 0.005). Nonetheless, overall brain to plasma ratios of eribulin only ranged from 0.13 to 1.99%.</p><p><strong>Conclusion: </strong>Although we could detect higher concentrations of eribulin in brain tissue where BBB was disrupted, intracerebral eribulin levels were not sufficient to predict eribulin would have consistent clinically meaningful activity against tumors in the brain.</p><p><strong>Clinicaltrials: </strong></p><p><strong>Gov identifier: </strong>NCT02338037 (January 9, 2015).</p>\",\"PeriodicalId\":9556,\"journal\":{\"name\":\"Cancer Chemotherapy and Pharmacology\",\"volume\":\" \",\"pages\":\"807-813\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573798/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Chemotherapy and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00280-024-04711-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Chemotherapy and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00280-024-04711-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
An intracerebral microdialysis study to determine the neuropharmacokinetics of eribulin in patients with metastatic or primary brain tumors.
Purpose: Eribulin is an inhibitor of microtubule dynamics. It is not as highly protein bound as the taxanes and is less vulnerable to extrusion by P-glycoprotein in the blood-brain barrier (BBB). These features predict that eribulin could play an active role in managing brain tumors. Indeed, the small amount of published clinical data indicates eribulin may have some efficacy against breast cancer brain metastases. To better understand the potential of eribulin for treating brain tumors, we performed an intracerebral microdialysis study to determine the neuropharmacokinetics of eribulin in cancer patients undergoing tumor resection.
Methods: After tumor removal, two microdialysis catheters were inserted into peritumoral brain tissue. Approximately 24 h after surgery, a single dose of eribulin 1.4 mg/m2 was administered intravenously. Dialysate samples were collected continuously for 72 h, with plasma samples collected in parallel. Eribulin concentrations were analyzed by tandem mass spectrometry.
Results: Dialysate samples from 12 intracerebral microdialysis catheters placed in 7 study participants were included in the analysis. A statistically significant difference was observed between eribulin concentrations in brain tissue where BBB was disrupted versus intact, with a difference in mean maximum concentrations on log2 scale of 3.37 (std err = 0.59, p-value = 0.005). Nonetheless, overall brain to plasma ratios of eribulin only ranged from 0.13 to 1.99%.
Conclusion: Although we could detect higher concentrations of eribulin in brain tissue where BBB was disrupted, intracerebral eribulin levels were not sufficient to predict eribulin would have consistent clinically meaningful activity against tumors in the brain.
期刊介绍:
Addressing a wide range of pharmacologic and oncologic concerns on both experimental and clinical levels, Cancer Chemotherapy and Pharmacology is an eminent journal in the field. The primary focus in this rapid publication medium is on new anticancer agents, their experimental screening, preclinical toxicology and pharmacology, single and combined drug administration modalities, and clinical phase I, II and III trials. It is essential reading for pharmacologists and oncologists giving results recorded in the following areas: clinical toxicology, pharmacokinetics, pharmacodynamics, drug interactions, and indications for chemotherapy in cancer treatment strategy.