Jeevanantham Sivaraj, Bosubabu Dasari, Prakash Subramani, Jayashree Pitchai, Sreekuttan M Unni, K Ramesha
{"title":"含微量铁的氮和硫掺杂多孔碳板作为高负载锂硫电池的高效多硫化物转化催化剂。","authors":"Jeevanantham Sivaraj, Bosubabu Dasari, Prakash Subramani, Jayashree Pitchai, Sreekuttan M Unni, K Ramesha","doi":"10.1002/cphc.202400406","DOIUrl":null,"url":null,"abstract":"<p><p>The major challenges in enhancing the cycle life of lithium-sulfur (Li-S) batteries are polysulfide (PS) shuttling and sluggish reaction kinetics (S to Li<sub>2</sub>S, Li<sub>2</sub>S to S). To alleviate the above issues, the use of heteroatom-doped carbon as a cathode host matrix is a low-cost and efficient approach, as it works as a dual-functional framework for PS anchoring as well as an electrocatalyst for faster redox kinetics. Here, the dual role of heteroatom-doped carbon sheets (CS) in the chemisorption of Li<sub>2</sub>S<sub>6</sub> and catalysis of its faster conversion to Li<sub>2</sub>S is established. To substantiate the catalytic effect, composite cathodes were prepared by encapsulating sulfur in CS which is further blended with carbon nanotubes (CNTs) to form a free-standing cathode. The electrochemical performances of the three cathodes (S@Fe-N-CS-CNT, S@Fe-S-CS-CNT, and S@Fe-NS-CS-CNT) were evaluated by constructing Li-S cells. The S@Fe-NS-CS-CNT delivers a high initial discharge capacity of 1017 mAh g<sup>-1</sup> at 0.5 C rate and sustains a capacity of 751 mAh g<sup>-1</sup> after 260 cycles with a capacity retention of 73.8 %. Even at a high S loading (12 mg cm<sup>-2</sup>), it delivers an initial discharge capacity of 892 mAh g<sup>-1</sup> and retained 575 mAh g<sup>-1</sup> after 200 cycles.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen and Sulfur Doped Porous Carbon Sheet with Trace Amount of Iron as Efficient Polysulfide Conversion Catalyst for High Loading Lithium-Sulfur Batteries.\",\"authors\":\"Jeevanantham Sivaraj, Bosubabu Dasari, Prakash Subramani, Jayashree Pitchai, Sreekuttan M Unni, K Ramesha\",\"doi\":\"10.1002/cphc.202400406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The major challenges in enhancing the cycle life of lithium-sulfur (Li-S) batteries are polysulfide (PS) shuttling and sluggish reaction kinetics (S to Li<sub>2</sub>S, Li<sub>2</sub>S to S). To alleviate the above issues, the use of heteroatom-doped carbon as a cathode host matrix is a low-cost and efficient approach, as it works as a dual-functional framework for PS anchoring as well as an electrocatalyst for faster redox kinetics. Here, the dual role of heteroatom-doped carbon sheets (CS) in the chemisorption of Li<sub>2</sub>S<sub>6</sub> and catalysis of its faster conversion to Li<sub>2</sub>S is established. To substantiate the catalytic effect, composite cathodes were prepared by encapsulating sulfur in CS which is further blended with carbon nanotubes (CNTs) to form a free-standing cathode. The electrochemical performances of the three cathodes (S@Fe-N-CS-CNT, S@Fe-S-CS-CNT, and S@Fe-NS-CS-CNT) were evaluated by constructing Li-S cells. The S@Fe-NS-CS-CNT delivers a high initial discharge capacity of 1017 mAh g<sup>-1</sup> at 0.5 C rate and sustains a capacity of 751 mAh g<sup>-1</sup> after 260 cycles with a capacity retention of 73.8 %. Even at a high S loading (12 mg cm<sup>-2</sup>), it delivers an initial discharge capacity of 892 mAh g<sup>-1</sup> and retained 575 mAh g<sup>-1</sup> after 200 cycles.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400406\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400406","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
提高锂硫(Li-S)电池循环寿命的主要挑战在于多硫化物(PS)穿梭和反应动力学迟缓(S 到 Li2S,Li2S 到 S)。为了缓解上述问题,使用掺杂杂原子的碳作为阴极主基质是一种低成本、高效率的方法,因为它既能作为锚定 PS 的双功能框架,又能作为加快氧化还原动力学的电催化剂。在这里,通过紫外可见光、XPS 和 CV 研究,确定了含铁杂原子掺杂碳片(CS)在化学吸附 Li2S6 和催化其快速转化为 Li2S 方面的双重作用。为了证实催化作用,研究人员在 CS 中封装了硫,并进一步与碳纳米管(CNT)混合形成独立的阴极,从而制备出复合阴极。通过构建锂-S 电池评估了三种阴极(即 S@Fe-N-CS-CNT、S@Fe-S-CS-CNT 和 S@Fe-NS-CS-CNT)的电化学性能。其中,S@Fe-NS-CS-CNT 在 0.5 C 速率下可提供 1017 mAh g-1 的高初始放电容量,在 260 个循环后可维持 751 mAh g-1 的容量,容量保持率为 73.8%。即使在高 S 负载(12 毫克 cm-2)条件下,它也能提供 892 mAh g-1 的初始放电容量,并在 200 次循环后保持 575 mAh g-1 的容量。
Nitrogen and Sulfur Doped Porous Carbon Sheet with Trace Amount of Iron as Efficient Polysulfide Conversion Catalyst for High Loading Lithium-Sulfur Batteries.
The major challenges in enhancing the cycle life of lithium-sulfur (Li-S) batteries are polysulfide (PS) shuttling and sluggish reaction kinetics (S to Li2S, Li2S to S). To alleviate the above issues, the use of heteroatom-doped carbon as a cathode host matrix is a low-cost and efficient approach, as it works as a dual-functional framework for PS anchoring as well as an electrocatalyst for faster redox kinetics. Here, the dual role of heteroatom-doped carbon sheets (CS) in the chemisorption of Li2S6 and catalysis of its faster conversion to Li2S is established. To substantiate the catalytic effect, composite cathodes were prepared by encapsulating sulfur in CS which is further blended with carbon nanotubes (CNTs) to form a free-standing cathode. The electrochemical performances of the three cathodes (S@Fe-N-CS-CNT, S@Fe-S-CS-CNT, and S@Fe-NS-CS-CNT) were evaluated by constructing Li-S cells. The S@Fe-NS-CS-CNT delivers a high initial discharge capacity of 1017 mAh g-1 at 0.5 C rate and sustains a capacity of 751 mAh g-1 after 260 cycles with a capacity retention of 73.8 %. Even at a high S loading (12 mg cm-2), it delivers an initial discharge capacity of 892 mAh g-1 and retained 575 mAh g-1 after 200 cycles.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.