发掘牛至精油的潜力:深入研究挥发性化合物、抗氧化、抗菌和抗酶特性的硅学洞察。

IF 2.3 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Chemistry & Biodiversity Pub Date : 2024-10-14 DOI:10.1002/cbdv.202401426
Abdelaali Balahbib, Oumayma Aguerd, Nasreddine El Omari, Taoufiq Benali, Mohamed Akhazzane, Riaz Ullah, Zafar Iqbal, Wei Zhang, Abdelaaty A Shahat, Gokhan Zengin, Imane Chamkhi, Abdelhakim Bouyahya
{"title":"发掘牛至精油的潜力:深入研究挥发性化合物、抗氧化、抗菌和抗酶特性的硅学洞察。","authors":"Abdelaali Balahbib, Oumayma Aguerd, Nasreddine El Omari, Taoufiq Benali, Mohamed Akhazzane, Riaz Ullah, Zafar Iqbal, Wei Zhang, Abdelaaty A Shahat, Gokhan Zengin, Imane Chamkhi, Abdelhakim Bouyahya","doi":"10.1002/cbdv.202401426","DOIUrl":null,"url":null,"abstract":"<p><p>The present study aimed to comprehensively characterize the volatile compounds from the aerial parts of Origanum grosii and evaluate their potential as antioxidants and enzyme inhibitors through both in vitro and in silico approaches. The essential oil's volatile constituents were identified using Gas Chromatography-Mass Spectrometry (GC-MS) analysis, revealing carvacrol (31 %), p-cymene (18.59 %), thymol (12.31 %), and ɣ-terpinene (10.89 %) as the major compounds. The antioxidant capacity was measured using three distinct assays. Notably, Origanum grosii essential oil (OGEO) exhibited significant antioxidant activity, with IC<sub>50</sub> values of 55.40±2.23, 81.65±3.26, and 98.04±3.87 μg/mL in DPPH, ABTS, and FRAP assays, respectively. The antibacterial activity was evaluated against both Gram-positive and Gram-negative bacterial strains, including Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa IH, and Listeria monocytogenes ATCC 13932. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the broth microdilution method. The inhibitory effects of OGEO were also assessed against enzymes implicated in human pathologies, including α-glucosidase, α-amylase, tyrosinase, and acetylcholinesterase (AChE). OGEO demonstrated notable inhibitory activity with IC<sub>50</sub> values of 49.72±1.64, 60.28±2.13, 97.14±5.15, and 119.42±2.97 μg/mL against elastase, α-glucosidase, tyrosinase, and α-amylase, respectively. Additionally, OGEO exhibited anti-AChE and anti-BChE effects, with values of 7.49±0.83 and 1.91±0.77 mg GALAE/g, respectively. The MIC values were 0.125 μg/mL for E. coli, P. aeruginosa, and S. aureus, and 0.25 μg/mL for L. monocytogenes, while MBC values ranged from 0.25 to 0.5 μg/mL. Compared to chloramphenicol (MIC: 8-16 μg/mL, MBC: 32-64 μg/mL), OGEO showed significantly stronger antibacterial effects. In silico analysis further supported the strong binding affinities of the major compounds to the target enzymes. Overall, OGEO shows promise as a natural agent with potential applications in the food, pharmaceutical, and cosmetic industries.</p>","PeriodicalId":9878,"journal":{"name":"Chemistry & Biodiversity","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the Potential of Origanum Grosii Essential Oils: A Deep Dive into Volatile Compounds, Antioxidant, Antibacterial, and Anti-Enzymatic Properties within Silico Insights.\",\"authors\":\"Abdelaali Balahbib, Oumayma Aguerd, Nasreddine El Omari, Taoufiq Benali, Mohamed Akhazzane, Riaz Ullah, Zafar Iqbal, Wei Zhang, Abdelaaty A Shahat, Gokhan Zengin, Imane Chamkhi, Abdelhakim Bouyahya\",\"doi\":\"10.1002/cbdv.202401426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study aimed to comprehensively characterize the volatile compounds from the aerial parts of Origanum grosii and evaluate their potential as antioxidants and enzyme inhibitors through both in vitro and in silico approaches. The essential oil's volatile constituents were identified using Gas Chromatography-Mass Spectrometry (GC-MS) analysis, revealing carvacrol (31 %), p-cymene (18.59 %), thymol (12.31 %), and ɣ-terpinene (10.89 %) as the major compounds. The antioxidant capacity was measured using three distinct assays. Notably, Origanum grosii essential oil (OGEO) exhibited significant antioxidant activity, with IC<sub>50</sub> values of 55.40±2.23, 81.65±3.26, and 98.04±3.87 μg/mL in DPPH, ABTS, and FRAP assays, respectively. The antibacterial activity was evaluated against both Gram-positive and Gram-negative bacterial strains, including Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa IH, and Listeria monocytogenes ATCC 13932. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the broth microdilution method. The inhibitory effects of OGEO were also assessed against enzymes implicated in human pathologies, including α-glucosidase, α-amylase, tyrosinase, and acetylcholinesterase (AChE). OGEO demonstrated notable inhibitory activity with IC<sub>50</sub> values of 49.72±1.64, 60.28±2.13, 97.14±5.15, and 119.42±2.97 μg/mL against elastase, α-glucosidase, tyrosinase, and α-amylase, respectively. Additionally, OGEO exhibited anti-AChE and anti-BChE effects, with values of 7.49±0.83 and 1.91±0.77 mg GALAE/g, respectively. The MIC values were 0.125 μg/mL for E. coli, P. aeruginosa, and S. aureus, and 0.25 μg/mL for L. monocytogenes, while MBC values ranged from 0.25 to 0.5 μg/mL. Compared to chloramphenicol (MIC: 8-16 μg/mL, MBC: 32-64 μg/mL), OGEO showed significantly stronger antibacterial effects. In silico analysis further supported the strong binding affinities of the major compounds to the target enzymes. Overall, OGEO shows promise as a natural agent with potential applications in the food, pharmaceutical, and cosmetic industries.</p>\",\"PeriodicalId\":9878,\"journal\":{\"name\":\"Chemistry & Biodiversity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry & Biodiversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cbdv.202401426\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Biodiversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cbdv.202401426","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目标是全面描述从牛至(Origanum grosii)的气生部分中提取的挥发性化合物的特征,并评估其作为体外和体内抗氧化剂和酶抑制剂的潜力。精油中的挥发性物质是通过气相色谱-质谱分析鉴定的。事实上,Origanum grosii 精油(OGEO)中含有香芹酚(15.59%)、山奈醇(14.83%)、β-萜品烯(13.56%)和百里酚(10.36%)。抗氧化潜力通过三种不同的方法进行了评估。值得注意的是,OGEO 表现出了重要的抗氧化活性;在 DPPH、ABTS 和 FRAP 试验中,IC50 值分别为 55.40 ± 2.23、81.65 ± 3.26 和 98.04 ± 3.87 µg/mL。研究人员还研究了精油对涉及人类病症的酶的抑制作用,包括α-葡萄糖苷酶、α-淀粉酶、酪氨酸酶和乙酰胆碱酯酶。在硅学中,这种精油中的主要化合物在与所测试的酶结合时表现出很高的结合能。总之,OGEO 具有天然制剂的功能,可用于食品、医药和化妆品,前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unlocking the Potential of Origanum Grosii Essential Oils: A Deep Dive into Volatile Compounds, Antioxidant, Antibacterial, and Anti-Enzymatic Properties within Silico Insights.

The present study aimed to comprehensively characterize the volatile compounds from the aerial parts of Origanum grosii and evaluate their potential as antioxidants and enzyme inhibitors through both in vitro and in silico approaches. The essential oil's volatile constituents were identified using Gas Chromatography-Mass Spectrometry (GC-MS) analysis, revealing carvacrol (31 %), p-cymene (18.59 %), thymol (12.31 %), and ɣ-terpinene (10.89 %) as the major compounds. The antioxidant capacity was measured using three distinct assays. Notably, Origanum grosii essential oil (OGEO) exhibited significant antioxidant activity, with IC50 values of 55.40±2.23, 81.65±3.26, and 98.04±3.87 μg/mL in DPPH, ABTS, and FRAP assays, respectively. The antibacterial activity was evaluated against both Gram-positive and Gram-negative bacterial strains, including Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa IH, and Listeria monocytogenes ATCC 13932. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the broth microdilution method. The inhibitory effects of OGEO were also assessed against enzymes implicated in human pathologies, including α-glucosidase, α-amylase, tyrosinase, and acetylcholinesterase (AChE). OGEO demonstrated notable inhibitory activity with IC50 values of 49.72±1.64, 60.28±2.13, 97.14±5.15, and 119.42±2.97 μg/mL against elastase, α-glucosidase, tyrosinase, and α-amylase, respectively. Additionally, OGEO exhibited anti-AChE and anti-BChE effects, with values of 7.49±0.83 and 1.91±0.77 mg GALAE/g, respectively. The MIC values were 0.125 μg/mL for E. coli, P. aeruginosa, and S. aureus, and 0.25 μg/mL for L. monocytogenes, while MBC values ranged from 0.25 to 0.5 μg/mL. Compared to chloramphenicol (MIC: 8-16 μg/mL, MBC: 32-64 μg/mL), OGEO showed significantly stronger antibacterial effects. In silico analysis further supported the strong binding affinities of the major compounds to the target enzymes. Overall, OGEO shows promise as a natural agent with potential applications in the food, pharmaceutical, and cosmetic industries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry & Biodiversity
Chemistry & Biodiversity 环境科学-化学综合
CiteScore
3.40
自引率
10.30%
发文量
475
审稿时长
2.6 months
期刊介绍: Chemistry & Biodiversity serves as a high-quality publishing forum covering a wide range of biorelevant topics for a truly international audience. This journal publishes both field-specific and interdisciplinary contributions on all aspects of biologically relevant chemistry research in the form of full-length original papers, short communications, invited reviews, and commentaries. It covers all research fields straddling the border between the chemical and biological sciences, with the ultimate goal of broadening our understanding of how nature works at a molecular level. Since 2017, Chemistry & Biodiversity is published in an online-only format.
期刊最新文献
Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation Revealed the Molecular Targets and Potential Mechanism of Nauclea Latifolia in the Treatment of Breast Cancer. Identification of New Compounds from the Roots of Rubia tibetica Hook. f. Minor Lignans with Inhibitory Activity against LPS-induced NO Production from Schisandra chinensis. Unraveling Water-Soluble Constituents of Basil (Ocimum basilicum L.) in Relation to Their Toxicity and Anti-Typhoidal Activity in Mouse Models. Evaluation of Dermal Wound Healing Potential: Phytochemical Characterization, Anti-inflammatory, Antioxidant, and Antimicrobial Activities of Euphorbia guyoniana Boiss. & Reut. Latex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1