利用 SparseFLIM 克服荧光寿命成像中的光子和时空稀疏性。

IF 5.2 1区 生物学 Q1 BIOLOGY Communications Biology Pub Date : 2024-10-21 DOI:10.1038/s42003-024-07080-x
Binglin Shen, Yuan Lu, Fangyin Guo, Fangrui Lin, Rui Hu, Feng Rao, Junle Qu, Liwei Liu
{"title":"利用 SparseFLIM 克服荧光寿命成像中的光子和时空稀疏性。","authors":"Binglin Shen, Yuan Lu, Fangyin Guo, Fangrui Lin, Rui Hu, Feng Rao, Junle Qu, Liwei Liu","doi":"10.1038/s42003-024-07080-x","DOIUrl":null,"url":null,"abstract":"Fluorescence lifetime imaging microscopy (FLIM) provides quantitative readouts of biochemical microenvironments, holding great promise for biomedical imaging. However, conventional FLIM relies on slow photon counting routines to accumulate sufficient photon statistics, restricting acquisition speeds. Here we demonstrate SparseFLIM, an intelligent paradigm for achieving high-fidelity FLIM reconstruction from sparse photon measurements. We develop a coupled bidirectional propagation network that enriches photon counts and recovers hidden spatial-temporal information. Quantitative analysis shows over tenfold photon enrichment, dramatically improving signal-to-noise ratio, lifetime accuracy, and correlation compared to the original sparse data. SparseFLIM enables reconstructing spatially and temporally undersampled FLIM at full resolution and channel count. The model exhibits strong generalization across experimental modalities including multispectral FLIM and in vivo endoscopic FLIM. This work establishes deep learning as a promising approach to enhance fluorescence lifetime imaging and transcend limitations imposed by the inherent codependence between measurement duration and information content. SparseFLIM enhances fluorescence lifetime imaging by reconstructing high-fidelity images from sparse photon data, generalizing across various imaging modalities, addressing fundamental trade-offs in FLIM to enable faster and higher-quality imaging.","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494201/pdf/","citationCount":"0","resultStr":"{\"title\":\"Overcoming photon and spatiotemporal sparsity in fluorescence lifetime imaging with SparseFLIM\",\"authors\":\"Binglin Shen, Yuan Lu, Fangyin Guo, Fangrui Lin, Rui Hu, Feng Rao, Junle Qu, Liwei Liu\",\"doi\":\"10.1038/s42003-024-07080-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluorescence lifetime imaging microscopy (FLIM) provides quantitative readouts of biochemical microenvironments, holding great promise for biomedical imaging. However, conventional FLIM relies on slow photon counting routines to accumulate sufficient photon statistics, restricting acquisition speeds. Here we demonstrate SparseFLIM, an intelligent paradigm for achieving high-fidelity FLIM reconstruction from sparse photon measurements. We develop a coupled bidirectional propagation network that enriches photon counts and recovers hidden spatial-temporal information. Quantitative analysis shows over tenfold photon enrichment, dramatically improving signal-to-noise ratio, lifetime accuracy, and correlation compared to the original sparse data. SparseFLIM enables reconstructing spatially and temporally undersampled FLIM at full resolution and channel count. The model exhibits strong generalization across experimental modalities including multispectral FLIM and in vivo endoscopic FLIM. This work establishes deep learning as a promising approach to enhance fluorescence lifetime imaging and transcend limitations imposed by the inherent codependence between measurement duration and information content. SparseFLIM enhances fluorescence lifetime imaging by reconstructing high-fidelity images from sparse photon data, generalizing across various imaging modalities, addressing fundamental trade-offs in FLIM to enable faster and higher-quality imaging.\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494201/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s42003-024-07080-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s42003-024-07080-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

荧光寿命成像显微镜(FLIM)可提供生化微环境的定量读数,在生物医学成像方面大有可为。然而,传统的荧光寿命成像依赖于缓慢的光子计数程序来积累足够的光子统计数据,从而限制了采集速度。在这里,我们展示了 SparseFLIM,一种通过稀疏光子测量实现高保真 FLIM 重建的智能范例。我们开发了一种耦合双向传播网络,可以丰富光子计数并恢复隐藏的时空信息。定量分析显示,与原始稀疏数据相比,光子富集超过十倍,极大地提高了信噪比、寿命精度和相关性。SparseFLIM 能够以全分辨率和通道数重建空间和时间采样不足的 FLIM。该模型在包括多光谱 FLIM 和活体内窥镜 FLIM 在内的各种实验模式中都表现出很强的通用性。这项工作证明,深度学习是增强荧光寿命成像和超越测量持续时间与信息内容之间固有的相互依赖关系所带来的限制的一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overcoming photon and spatiotemporal sparsity in fluorescence lifetime imaging with SparseFLIM
Fluorescence lifetime imaging microscopy (FLIM) provides quantitative readouts of biochemical microenvironments, holding great promise for biomedical imaging. However, conventional FLIM relies on slow photon counting routines to accumulate sufficient photon statistics, restricting acquisition speeds. Here we demonstrate SparseFLIM, an intelligent paradigm for achieving high-fidelity FLIM reconstruction from sparse photon measurements. We develop a coupled bidirectional propagation network that enriches photon counts and recovers hidden spatial-temporal information. Quantitative analysis shows over tenfold photon enrichment, dramatically improving signal-to-noise ratio, lifetime accuracy, and correlation compared to the original sparse data. SparseFLIM enables reconstructing spatially and temporally undersampled FLIM at full resolution and channel count. The model exhibits strong generalization across experimental modalities including multispectral FLIM and in vivo endoscopic FLIM. This work establishes deep learning as a promising approach to enhance fluorescence lifetime imaging and transcend limitations imposed by the inherent codependence between measurement duration and information content. SparseFLIM enhances fluorescence lifetime imaging by reconstructing high-fidelity images from sparse photon data, generalizing across various imaging modalities, addressing fundamental trade-offs in FLIM to enable faster and higher-quality imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
期刊最新文献
Iterative crRNA design and a PAM-free strategy enabled an ultra-specific RPA-CRISPR/Cas12a detection platform. Discovery of a family of menaquinone-targeting cyclic lipodepsipeptides for multidrug-resistant Gram-positive pathogens. KLF13 promotes SLE pathogenesis by modifying chromatin accessibility of key proinflammatory cytokine genes. Mutational signature analyses in multi-child families reveal sources of age-related increases in human germline mutations. Sources of variation in the serum metabolome of female participants of the HUNT2 study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1